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PREFACE

Held at intervals in Scotland, the first seven International Machine
Intelligence Workshops spanning the period of 1965-71 were involved in
developing the new subject internationally—in those early days mainly as
a mid-Atlantic phenomenon. Japan and continental Europe had yet to
enter in strength. Also in the wings was the ill-famed ‘Lighthill report’
which in 1973 stigmatized machine intelligence as a mirage and in the UK
demolished its local infrastructure.

Two and a half millennia ago, the historian Thucydides observed that it
is not fortifications which make a city but people. In spite of dispersion,
the AI culture under challenge evinced both hardiness and solidarity.
Included in the exodus from Britain’s ‘Al winter’ were the MI Work-
shops themselves. Successively they found hospitality in Santa Cruz,
USA (1975), Repino, USSR (1977), and Cleveland, USA (1981), by
which time the distant tidings of Japan’s Fifth Generation presaged the
coming thaw. Preparations were begun to found a new UK centre, the
Turing Institute at Glasgow. By 1985 sufficient critical mass existed for
the new Institute to be able to host a return after fourteen years to the
series’ land of origin. With additional support from the University of
Strathclyde, the eleventh Workshop took place at the University’s study
centre at Ross Priory near the banks of Loch Lomond.

The titles of the twenty papers which now emerge are indicative of a
continuing trend towards unity of approach. Logical models of deductive
and inductive reasoning become ever more central and find a common
frame in interactive environments for practical problem solving. We also
see the first demonstrations that the fruits of past solutions can be
systematically digested by an automated solver and built into incremental
bodies of new, human-type, knowledge.

The long expected maturation of machine intelligence is evidently at
last occurring apace. An adolescent’s elders not uncommonly warn, as
elders of the physical sciences have of AI, that the youth may have
outgrown his own strength. Has the maturation of machine intelligence
been of this kind? With some confidence we commit this eleventh volume
to the hands of its readers and invite them to pursue the question to their
own conclusions.

February 1988 Donald Michie
Editor in Chief
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Partial Models and Non-monotonic
Inference
K. Konolige

Artificial Intelligence Center, SRI International and
Center for the Study of Language and Information, Stanford University, USA

Abstract

The non-monotonic character of common-sense reasoning is well recog-
nized, as we often jump to conclusions that are not strictly justified by
our partial knowledge of a situation. Most formalizations of this idea are
best described as syntactic transformations on theories, with little or no
semantic underpinnings. In this paper we develop a method of non-
monotonic reasoning from a strictly semantic viewpoint, namely, as
conjectures about how the missing information in a partial model should
be filled in. The advantages of this approach are a natural and intuitively
satisfying formalization of diverse types of non-monotonic reasoning,
among them domain closure, the unique names hypothesis, and default
reasoning.

1. INTRODUCTION

The importance of non-monotonic reasoning for common-sense domains
is widely recognized in the field of Artificial Intelligence (a1). In this
paper we will be concerned with such reasoning in its most general form,
that is, in inferences that are defeasible: given more information, we may
retract them.

The purpose of this paper is to introduce a form of non-monotonic
inference based on the notion of a partial model of the world. We take
partial models to reflect our partial knowledge of the true state of affairs.
We then define non-monotonic inference as the process of filling in
unknown parts of the model with conjectures: statements that could turn
out to be false, given more complete knowledge. To take a standard
example from default reasoning: since most birds can fly, if Tweety is a
bird it is reasonable to assume that she can fly, at least in the absence of
any information to the contrary. We thus have some justification for
filling in our partial picture of the world with this conjecture. If our
knowledge includes the fact that Tweety is an ostrich, then no such
justification exists, and the conjecture must be retracted.

3



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

Of course, there are many different ways to represent partial knowl-
edge of the world; in a1, first-order theories (FoTs) are a widely used
method. However, FOTs are in a sense too partial for the purpose of
non-monotonic inference—it is often difficult to decide just how the
‘partial’ should be filled. For example, consider the sentence

Bird(Tweety) v Bird(Opus) (1.1)

This sentence gives us partial information about the world, in the sense
we know either Tweety or Opus (or both) is a bird; but given just (1.1) it
is impossible to conclude that we know Tweety to be a bird, or that we
know Opus to be a bird.

Now suppose we are given a default rule stated informally as

In the absence of conflicting information, assume that
3 . 1.2)
a bird flies.

How can this rule be applied to our bird theory (1.1) to make conjectures
about the ability of Tweety and Opus to fly? One approach is to relate
the application of the default to a consistency condition on the theory, as
in the default theories of Reiter (1980). Roughly speaking, our informal
rule translates into the following rule for extending an FoT:

If in a theory x is a bird and it is consistent to assume (1.3)
that x can fly, do so. :

Unfortunately such a default rule yields no new information when
applied to (1.1). The disjunction does not permit us to conclude that any
particular individual is a bird, and so it is impossible to instantiate the
variable x in the antecedent of the default rule.

But clearly our intuitions are that (1.2) tells us something more about
the theory (1.1). Suppose we ask what possible partial states of affairs
would make (1.1) true. One of the following two is a minimally necessary
condition:

1. Tweety is a bird.

2. Opus is a bird.

Now the application of the default rule is straightforward for each case,
so we conjecture that either Tweety or Opus can fly.

One conclusion to be drawn from this example is that default reasoning
should be based on an analysis of the models that a theory admits. It is
the claim of this paper that partial models are an appropriate and natural
level of description for the application of default rules, and other types of
non-monotonic reasoning as well. In the next section, we support this
claim by discussing general principles for implementing non-monotonic
reasoning as conjectures on partial models, and by criticizing another
model-based framework for non-monotonic inference, McCarthy’s
(1980, 1984) circumscription schema, from this point of view. The rest of
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the paper is devoted to illustrating the general principles using a
particular type of partial model based on Hintikka interpretations,
defined in Section 3. Because these models use the constants of a theory
as their domain, they admit very natural treatment of assumptions
involving equality and the naming of individuals, which are illustrated in
Section 4, along with other types of default reasoning, including domain
closure and the assumption of disjoint domains.

2. A SEMANTICS FOR NON-MONOTONIC INFERENCE

In this section we consider some general principles of a partial-model
approach to non-monotonic inference, and introduce notation to be used
throughout the paper. An analysis of circumscription based on these
principles is also presented.

2.1. Conjectures on partial models

Any consistent set of sentences (or theory) T in a first-order language is
satisfied by a set of (first-order) models. To continue the example from
the Introduction: let Tweety refer to the individual TWEETY, and Opus to
opus, and let BIRD and FLy be the properties of being a bird and flying,
respectively. Now consider the models of Bird(Tweety) v Bird(Opus):

M, = BIRD : { TWEETY} Fry:{}
M, = BIRD : {TWEETY} FLy: {TWEETY}
M; = BIRD: {TWEETY, €, } Fry: {}
M, = BIRD: {TWEETY, €,} FLy: {TWEETY}
M;s = BIRD: {TWEETY, €, } FLy: {TWEETY, e,}
Mg = BIRD: {TWEETY, €, €,} Fry: {}
M, = BIrD: {oPUS} FLy: {} (2.1)
M, ., = BirD: {OPUS} FLy: {opus}
M, ., =BirD:{opus, e} Fry:{}
M, ,;=BirD: {opPUs, e} FLy: {opus}
M, ,,=BirD: {oprus, e} FrLy: {opus, e}
M; = BIRD : {OPUS, TWEETY} Fry:{}

These models naturally fall into two groups, corresponding to one of the
two disjuncts in the theory: either Tweety is a bird, or Opus is (there are
models such as M; in which both these are true; such models fall into both
groups). We can represent these groups by using the notion of a partial
model. A partial model contains only a part of the information necessary
in a (complete) model; by extending the partial model, we arrive at a set
of models. In this example, we could construct two partial models by
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specifying just a part of the extension of the BIrp relation:

m, = TWEETY € BIRD 2.2)

m, = OPUS € BIRD.

The extension of m, includes M; — Ms and M;; the extension of m,
includes M; — M, , and M;. We write E(m) for the set of extensions of a
partial model m.

We have in m; and m, a formal model-theoretic counterpart of the
informal reasoning we carried out in the Introduction. We can formulate
the default rule 1.2 as the following conjecture:

If within a partial model x is a bird and it is consistent (2.3)
to assume that x flies, do so. ;
Note that this is exactly the default rule (1.3), except that ‘theory’ has
been changed to ‘partial model’. A proposition P is consistent with a
partial model m if there is an extension of m satisfying P. In the case of
m, there are models in which Tweety flies, and so (2.3) picks out just that
subset {M,, Ms, ...} of E(m,); similarly, for m, we get the subset
{M;1, M; 4, ...}. Since the world could be described by either m, or
m,, we take the union {M,, Ms, M., M, ...} of these models as the
result of default reasoning. Obviously, Fly(Tweety) v Fly(Opus) is sat-
isfied by each of these models.

To sum up: let T be a theory and « a conjecture on partial models. A
conjecture picks out a non-empty subset of the extensions of a partial
model. Non-monotonic inference can be viewed as the following process:

1. Let M be all models of T. Form a set of all partial models m. Let M’
be M — E(m), i.e. all models not in the extension of some member of m.

2. Let C(a, m) be the set of extensions of m chosen by the conjecture.

3. We say that a set of sentences T’ is inferred by a from T if every
member of 7' is satisfied by each of M’ U C(a, m). We write this as
T kT,

Rem.arks. The general nature of non-monotonic inference here is the
pruning of the set of models of a theory. For any given language L, we
may have in mind certain types of models, the intended interpretations of
L. For example, in studying resolution, we restrict our attention to
Herbrand interpretations, in which all terms denote themselves.

We consider some general technical points of this definition. First, the
inference operator T+, can be non-monotonic in 7, as is easily shown by
example. Let « be the conjecture that picks out only those extensions of
a partial model in which P is false. We have:

{@} P + (2.4)
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but
{0, Py k. P. (2.5)

A special case, which is monotonic in 7, is the conjecture d that picks out
all extensions of a partial model. The operator ks is simple logical
deduction, that is, for T+s T', T' is the set of logical consequences of 7,
and hence also deductive consequences, by the completeness theorem for
first-order logic.

Because conjectures pick out a subset of the possible models of 7, the
inference operator has the reflexive property

Tk, T. (2.6)

Conjectures are thus appropriate for default reasoning or defeasible
reasoning in general, where the initial facts, though sparse, are assumed
to be accurate. There are, of course, other types of non-monotonic
reasoning that are not naturally expressed as conjectures: for example,
events are often treated formally as arbitrary transformations on models,
and the revision of belief on the basis of new information requires
changing a theory to admit models it did not originally have.

There is no guarantee that partial models exist, or if they do, that their
extensions fully cover the set of models M. M’ is designed to take up the
slack in these situations, so that all models of M are ‘accounted for’. This,
and the fact that conjectures are a pruning operation on sets of models,
yield the following consistency property for the inference operator: if the
initial theory T is consistent, then any set of inferred sentences is also
consistent; that is, it is impossible to have

Ttop A 2.7)

The notion of the coverage of partial models is an important one, and
is in some sense a completeness criterion for this method. If there are no
partial models for a given theory, then for every conjecture a the
operator +, becomes logical deduction, and no non-monotonic inference
takes place. If the partial models of a theory fully cover the intended
models (that is, every intended model is an extension of some partial
model), then a conjecture on the partial models takes into account all of
the interpretations of the theory. For example, the two partial models
(2.2) cover all the models of T = Bird(Tweety) v Bird(Opus), and so the
conjecture (2.3) gives us the maximum restriction on the models of 7. An
important feature of conjectures is that they degrade gracefully when
some models are not covered, either because.of theoretical or computa-
tional limitations. If for some reason only m’l is-uséd as a partial model of
T, then the conjecture (2.3) produces the weaker result_

T+, Bird(Tweety) > Fly(Tweety). | 4 (2.8)
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One of the strengths of the method is that there are many different
ways to construct partial models of the world. The type of partiality we
choose to represent will influence the nature of the non-monotonic
operator +,. For example, we might take partial models to be a subset of
each relation’s (positive) extension, as we did in (2.2); data bases are
often viewed in this way (Gallaire et al., 1978). A partial model of this
sort covers a set of models that agree on the common subset, but can
otherwise disagree. It invites the conjecture that the subset is the
complete extension: there are no other true positive facts about the world
(sometimes referred to as the closed-world assumption; see Section 4).

An important type of partiality, and one we will exploit for most of the
remainder of this paper, is the ability to leave unspecified the equality
(or inequality) of terms in a theory. One way to do this is by intro-
ducing syntactic elements into the partial models, as we do with Hintikka
sets in Section 3. Partial models then become sets of atoms and their
negations, including equality predications. For example, the set
{Bird(Tweety), Bird(Opus)} has extensions in which Tweety and Opus
are the same individual, and in which they are different. Assumptions
about the uniqueness of named individuals can be framed in terms of
conjectures on this partial model.

2.2. Circumscription

Predicate circumscription is a proof-theoretic technique in which an rotr T
is augmented by a circumscription formula. We can summarize its current
formulation (from Etherington et al., 1984) as follows: let P be a
predicate, and P’ a finite sequences of predicates of a finite theory T.
Then Circ(T, P, P') is a particular second-order formula expressing the
circumscription of P, letting the predicates P’ vary.

The semantics of circumscription come from the notion of P-minimal
models. A model M is P-minimal if there is no other model N, agreeing
with M everywhere except for the predicates P and P’, such that the
extension of P in N is a proper subset of that in M. Circumscription is
sound with respect to minimal models, in the sense that Circ(T, P, P') is
true in all P-minimal models of 7'; however it is known to be incomplete
(these results are summarized in Minker and Perlis, 1985).

Partial model conjectures have close ties with reasoning about minimal
models. In fact, we can express the intended semantics of circumscription
as a conjecture in the following way. We take partial models to be the
P-minimal models, where the extension of a partial model M is the set of
all models N which agree with M, except possibly on P and P’. The
conjecture « is to pick only the minimal model itself.

Reasoning about minimal models was first employed in AI by
McCarthy (1980) in an attempt to deal with what he called the
qualification problem. In brief, this is the problem of stating formally

8
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what objects and conditions do not obtain in a given situation. Using
minimal models is a means of applying Occam’s razor: only those objects
are assumed to exist that are actually required by the statements of a
theory.

It is not clear, however, that reasoning in minimal models is the best
means of performing defeasible reasoning in general. For example, it can
lead to a complicated statement of defaults by means of an abnormality
predicate. Compare the compact formulation of Example 4.9 with the
corresponding circumscriptive rendering on pp. 300-302 of McCarthy
(1984). But the evidence here is not yet in, and awaits a fuller exploration
of the application of circumscription.

With regard to assumptions about equality, certain inherent limitations
are already known (see Etherington et al., 1984). Because minimal
models are defined with respect to a fixed denotation function for the
terms of a theory, it is impossible to perform non-monotonic inferences
about the equality of terms by reasoning in such models. However, there
have been attempts to account for equality by importing names and their
denotations as objects of the domain (Lifschitz, 1984; McCarthy, 1984).

By contrast, we can choose partial models in such a way that
non-monotonic inferences about equality are possible. As we show in the
next section, partial model conjectures enjoy a natural treatment of
assumptions about equality, including domain closure and the unique
names hypothesis.

Finally, non-monotonic inference using partial model conjectures has
been defined to always yield a consistent extension for a theory. For
circumscription this is not the case, unless every model of the theory is an
extension of a minimal model. In those instances where this is not the
case, it has been shown that the circumscription formula can be
inconsistent with an originally consistent theory (Etherington et al.,
1984).

3. HINTIKKA SETS AS PARTIAL MODELS

We now introduce a particular type of partial model, based on the
method of analytic tableaux. [We do not give more than a cursory
presentation of this method. See Smullyan (1968) for a general introduc-
tion; the method used here is based on work by Hintikka (1955).]
Consider a theory 7, which may be infinite. A tableau for T is a tree
whose nodes are sentences, constructed in the following manner. The
root of the tree is an arbitrary element of 7. The tree is grown in a
systematic manner from its leaves by adding new nodes, either elements
of T or sentences derived from previous nodes by a small set of rules.
Some of these rules, those dealing with disjunction, cause splits in the
tree. The end result is a (perhaps infinite, but finitely branching) tree
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