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PREFACE

This book presents a theoretical framework and control methodology
for a class of complex dynamical systems characterized by high state space
dimension, multiple inputs and outputs. significant nonlinearity, parametric
uncertainty and unmodelled dyvnamics.

The book starts with an introductory Chapter 1 where the peculiari-
ties of control problems for complex systems are discussed and motivating
examples from different fields of science and technology are given.

Chapter 2 presents some results of nonlinear control theory which assist
in reading subsequent chapters. The main notions and concepts of stability
theory are introduced, and problems of nonlinear transformation of sys-
tem coordinates are discussed. On this basis, we consider different design
techniques and approaches to linearization, stabilization and passification
of nonlinear dynamical systems.

Chapter 3 gives an exposition of the Speed-Gradient method and its ap-
plications to nonlinear and adaptive control. Convergence and robustness
properties are examined. Problems of regulation, tracking, partial stabiliza-
tion and control of Hamiltonian systems are considered.

In Chapter 4 we introduce the main notions related to the properties
of regular hypersurfaces of being an invariant set and nontrivial attractor
of a dynamical system. Then. we present a methodology of system analysis
in the state space and design tools for solving the problems of equilibrium
and set stabilization. as well as tracking control, for nonlinear multivariable
systems having several controlling inputs.

In Chapter 5 we study multi-dimensional problems of outputs regula-
tion, coordinating control and curve- (surface-) following, having the evi-
dent geometric nature similar to that of the problems considered in Chapter
4. However, unlike the previous parts, the emphasis is here placed on the
output space where the majority of the real problems are originally stated.

In Chapter 6 the basic design methods of adaptive, robust adaptive and
robust nonlinear control of uncertain plants are presented in the form of
universal design tools. Various methodologies (including recursive design,
augmented error based design, high-order tuner based design and reduced
order reference model design). which allow one to overcome structural ob-
stacles caused by violation of the matching condition or by high relative
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degree, are considered in the chapter. The practical applicability of the
introduced design tools is illustrated by the example of output-feedback
control of uncertain single-input/single-output linear systems.

Chapter 7 is devoted to decomposition methods in adaptive control
based on separation of slow and fast motions in the system. Convergence
and accuracy of decomposition for singularly perturbed and discretized sys-
tems are examined. The Speed-Gradient approach to decentralized adaptive
control of nonlinear systems is presented.

In Chapter 8 we study applied nonlinear control problems of providing
the required spatial motion of complex mechanical systems described by
the Newton, Euler and Lagrange equations. The presentation begins with
investigating the problem of motion of a rigid body, which is the basis for
further consideration of multi-body mechanical systems such as multi-link
manipulation robots and multi-drive wheeled mechanisms. Also applica-
tions to control of oscillatory mechanical svstems, based on the material of
Chapter 3, are presented.

Finally, in Chapter 9 the relations between control and physics are dis-
cussed. New concepts of “feedback resonance”, “excitability index” are
introduced with the purpose to better understand behavior of nonlinear
nearly conservative systems under feedback action. The Speed-Gradient
method of Chapter 3 is applied both to organize resonant system behavior
and to reformulate the laws of dynamics for a wide class of physical sys-
tems. Applications to escape {rom a potential well, stabilization of unstable
modes, feedback spectroscopy and derivation of the Onzagger principle are
given. The chapter outlines a new field of research that may be called cy-
bernetical physics.

A unique feature of the authors” approach is the combination of rigorous
concepts and methods of modern nonlinear control such as goal sets, invari-
ant and attracting submanifolds, Lvapunov functions, exact linearization
and passification, the Kalman-Yakubovich lemma and so on, with approx-
imate decomposition based methodologies related to partial linear approx-
imation, averaging and singular perturbation techniques.

The authors present a number of original concepts and methods: set
(submanifold) stabilization and coordinating control, Speed-Gradient con-
trol and adaptation algorithms, systems with implicit reference models,
simplified robust modifications of high-order tuners and so on. Also some
results published previously in the Russian literature and not well known in
the West are exposed. Particularly, the book presents the most important
results given in the authors’ previous publications:

e Fomin, V.N.. A.L. I'radkov and V.A. Yakubovich (1981) Adaptive
Control of Dynamic Objects, Moscow, Nauka, (in Russian);
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e Fradkov, A.L. (1990) Adaptive Control in Complex Systems, Moscow.
Nauka, (in Russian);

e Drozdov, V.N., L.V. Miroshnik and V.L. Scorubsky (1989) Automatic
Control Systems with Microcomputers, Leningrad, Mashinostroenie, (in
Russian);

e Miroshnik, I.V. (1990) Coordinating Control of Multivariable Systems.
Leningrad, Energoatomizdat, (in Russian);

e Control of Complex Systems (1995) Fradkov, A.L. and A.A. Stotsky
(Eds.), St.Petersburg, Institute for Problems of Mechanical Engineering;
e Proceedings of the Laboratory of Cybernetics and Control Systems
(1996) Miroshnik. I.V. and V.O. Nikiforov (Eds.), St.Petersburg, Insti-
tute of Fine Mechanics and Optics.

The prospective reader should have some degree of familiarity with stan-
dard university courses of calculus, linear algebra and ordinary differential
equations. Knowledge of the basic course on linear control theory and the
main concepts of differential geometry is also desirable. The book will be
useful for researchers, engineers, university lecturers, and postgraduate stu-
dents specializing in the fields of automatic control, mechanics and applied
mathematics.

The efforts of the authors when writing the book have been shared in
the following way:

e A.L. Fradkov wrote Chapters 3, 7 and 9, Sections 6.4, 8.4, and Ap-
pendix;

e 1.V. Miroshnik wrote Chapters 4 and 5, Sections 1.1, 1.2, 8.1-8.3;

e V.0. Nikiforov wrote Chapter 6, Sections 1.3, 7.1 and 7.2.

Chapter 2 was written by all authors in close cooperation.

The authors would like to acknowledge the valuable help of their col-
leagues associated with the Laboratory “Control of Complex Systems”
of the Institute for Problems of Mechanical Engineering of the Russian
Academy of Sciences and the Laboratory “Cybernetics and Control Sys-
tems” of the Saint-Petersburg State Institute of Fine Mechanics and Optics
(Technical University): B.R. Andrievsky, M.V. Druzhinina, P.Yu. Guzenko.
S.M. Korolev, A.V. Lyamin, A.Yu. Pogromsky, I.G. Polushin, V.A. Shiegin.
A.S. Shiriaev, O.I. Koroleva, K.V. Voronov.

We are also grateful to G.G. Levina, M.I. Miroshnik and D.A. Tomchin
for their help in preparation of the manuscript.

The book contains the results of research supported by the Russian
Foundation for Basic Research (grants 96-01-01151.97-01-0432,99-0100672,
99-01-00761) and by the St. Petersburg Scientific and Educational Center
for the Problems of Machine-Building, Mechanics and Control Processes
(Project 2.1-589 of the Russian Federal Program “Integration”). The work
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of A.L. Fradkov was also supported in part by the Dutch Organization for
Pure Research (NWO). lmportant contributions stem from contacts with
the students and from the lecture courses delivered by the authors in the
Saint-Petersburg State Institute of Iine Mechanics and Optics (Techni-
cal University), Baltic State Technical University (“Voenmekh”) and the
Saint-Petersburg State University in 1995-1998.

Saint-Petersburg, Russia, 1999



NOTATIONS AND DEFINITIONS

Throughout the book we use the following notations and definitions.
The set of real numbers is denoted as R or R', while R" stands for the
n-dimensional vector space. An element of R" is the column vector com-

posed of z,zy,...,7, and denoted as = col(zy,Z2,...,Z,) OT T = {z:},
i=1,2,...,n. The set of positive real numbers and zero is denoted as R,
or [0,00).

FEuclidean norm of the vector z € R"™ is denoted as

lz] = \/z'{’+x§+---+z%.

Let A € R™ x R" be a real n x n matrix. The eigenvalues of A are denoted
as \;{A}, 1 = 1,2,...,n, and |A| means a matriz norm induced by the
Euclidean vector norm, i.e.,

|A| = max /N {ATA} .

Let P be a symmetric real n X n matrix and z” Pz is a quadratic form. If
TPz > 0 for any = # 0, then the matrix P is called positive definite and
denoted as P > 0. Matrices satisfying nonstrict inequality z” Pz > 0, for
all z € R"™, are called positive semidefinite or nonnegative. The notation
|z|p is used for the weighted Euclidean norm of z, i.e.,

|lz|p = VaTPux .

Let f(t) be a measurable vector function defined on R, ie., f: Ry —
R"™. The £, norm, where 1 < p < 00, is introduced as

1 £lly = (/Ooolf(t)l’”dt)%,

while Lo, norm is defined as

| fllco = ess sup FIQIB
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where "esssup” is taken over Ry with possible exception of a set of zero
Lebesgue measure. If the norm || f||, is finite, we write f € £,. The spaces
of all functions that are globally bounded and square-integrable on [0, 00)
are denoted by L., and L9, respectively. The vector space of continuous
functions f: Ry — R"™ with the uniform norm

I flle = sgplf(t)l

is denoted C[0, 00).
A scalar function v : R™ — Ry is called positive definite if v(0) = 0 and
v(x) > 0 for all # # 0. A scalar function v : R" x R+ — R is called radially
unbounded if

lim infw(z,t) = oo.
I:L'|—>()o t>

A function v : Ry — Ry is called a K-function if it is continuous, strictly
increasing and y(0) = 0; it is referred to as a Koo-function if it is a radially
unbounded K-function.

The function f(z,t) : R" x Ry — R" is called Lipschitz in z in the
set D = X x T C R" x Ry uniformly in t if there exists a constant
L = L(X) > 0 such that for all (z,t) € D and (z*,¢) € D the following

inequality is valid
|f(z,8) = (f(z",t)] < L|o—2z7|, (N.1)

and the constant L does not depend on t € 7. The function f(z,t) is
called locally Lipschitz in @ uniformly in t if it is Lipschitz in D = X x R,
uniformly in ¢ for any compact set X C R". Finally, the function flz,1)
is called globally Lipschitz in x (or, simply, Lipschitz) if it is Lipschitz in
R"™ x Ry, i.e., inequality (N.1) holds for all z € R™, z* € R™ and t >0,
while the constant /. does not depend on t.

Let x € A, where X C R" is an open set, and a scalar real-valued
function f(a) = f(21,2,...,2,) is the mapping X — R. The function f is
a function of a class C*, k = 1 2,...,00 (or f(z) € C*) when it is k times
continuously dlﬁelentlable. It is smooth when f € C*® or f € C*, where k
is the necessary order of its derivatives.

The vector function f(z) = col(f;(x ) fal2), - (z)), or the mapping
X — R™, is smooth (f € C* or f € C* for some large k) when all scalar
functions fJ are of the class C* or C*, respectively.

Let z € X, X C R" and Y C R™ be open sets. A Jacobian matriz of
the smooth vector function f(z), or of the mapping f: X — Y, is an m x n
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matrix of its partial derivatives df;/0x; defined as

0f1/0zy 0fi/0z2 ... 0fi/0zn
af 0fy)0xy 0fy/0xz2 ... 0f:/0z,
9z : : :

Ofm/0zy Ofm/0xe ... 0fin/0x,

The smooth mapping f is called nonsingular at the point r = z* € X when
rank fla*)=m; 1.8
of
rank ——
! oz
Let m = n. The smooth mapping f : A — Y is called a diffeomorphism
when it is one-to-one and there exists a smooth inverse mapping f~!: Y —
A
A smooth mapping f: X — R™ that assigns to each point z € X C¢ R"
a vector f € R™ is called a smooth vector field. Let gi(z),g2(z),...,g.(2)
be the smooth vector fields defined on the set X. A mapping G(z) assigning
to each point z € X' a vector space that spans ¢1,92,...,9,, or

= m.

T*

G(z) = span{gi(z),g2(2),...,9.(7)}

is called a smooth distribution on the set X.
Let ¢(z) € ("' be a scalar function R" — R. Then V¢(z) denotes the
column vector of its first derivatives calculated as
0\ "
Vo(z) = [ =) .
o(=) (dl)

If 2 = col(zy,29) and ¢ is a function of two vector variables. then

9o\
Ve, #o(z1,22) = < (D) ;

Oy

Let f(z) be a smooth vector field defined on X C R™. The scalar func-
tion X — R introduced as
0¢
L.t = Z£ fts
19() = 52 j(a)
is a derivative of ¢ along f, often called a (scalar) Lie derivative. Let f(x)
and g(z) be smooth vector fields defined on X. The mapping [f,g]: X x
X — R" (a vector Lie derivative) introduced as
of

J@) 9@ = Lrga) = 225@) - Ly
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is called a Lie bracket. Throughout the book the following notations are
also used

LyLrd(e) = 5-(Ls9) (=), Lhole) = 2-(£h10) g()

adfg(e) = g(2), adly(z) = [[(2),g(a)], adbg(z) = [f(x),adt"g(z)),
where k = 2.3, .. ..
A smooth distribution G(z) = span{gi(z), g2(2),...,9,(z)} defined on

the set A’ is called nonsingular when dim G(z) = m = const for all z € X,
and involutive when

[9:(z),gi(z)] € G(z)

for all vectors gi(z), g;(z) € G(z).

A polynomial §(p) is called Hurwitz if all roots of the equation 3(p) = 0
have negative real parts. A real n x n matrix A is called Hurwitz if all its
eigenvalues A;{A}, i = 1,2,...,n, have negative real parts.

The degree of a polynomial B(p) is denoted as n = degf(p). The relative
degree of a rational function 8(p)/a(p) is the integer p = dega(p)—degB(p).
The rational function is called:

i) proper if p > 0;

ii) strictly properif p > 0;

1il) minimum phase if B(p) is Hurwitz;

V) asymptotically stable if a(p) is Hurwitz.
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