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PREFACE

An understanding of the dynamic characteristics of a structural system is
essential for its design and control. Many of the important characteristics
can only be modeled by nonlinear governing equations. When the governing
equations are nonlinear, the system and the characteristics of the solutions
are also said to be nonlinear. There is a vast range of interesting, important,
and potentially dangerous phenomena that are nonlinear. Nonlinearities can
have important influences even while the amplitudes of the response are quite
small (Nayfeh and Mook, 1979).

As an example, modeling a system that is subjected to a parametric exci-
tation by linear equations and boundary conditions is unrealistic if the para-
metric excitation leads to instability because such a model predicts that the
growth of the response is exponential. Consequently, it would be more realistic
to include nonlinear terms, which limit the predicted response. Moreover, the
linear model may predict stability (i.e., a decaying response), but the actual
response may not decay under certain conditions. In this case, the parametric
excitation produces a so-called subcritical instability that is only predictable
by a nonlinear model.

Nonlinearity brings a whole range of phenomena that are not found in
linear systems. In single-degree-of-freedom systems, these include multiple
solutions and jumps; limit cycles; frequency entrainment; natural-frequency
shifts; subharmonic, superharmonic, combination, and ultrasubharmonic res-
onances; period-multiplying and demultiplying bifurcations; and chaos. The
devastating consequences of having one harmonic load with a frequency near
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the natural frequency might be lowered to a tolerable level by simply adding
one or more nonresonant harmonic loads that produce a shift in the natu-
ral frequency. The large response produced by a primary resonant excita-
tion can also be reduced significantly by simply adding other superharmonic-
resonant loads having the proper amplitudes and phases. When the nonlinear
terms are cubic and the sum of three frequencies in a multifrequency load
equals or nearly equals the natural frequency of a system, it can experience a
combination-resonant response in which the peak amplitudes are several times
larger and appear more often than those predicted by linear theory. For such
a response, the actual fatigue life can be much lower than what was predicted.

For multidegree-of-freedom and continuous systems, another example of a
nonlinear phenomenon is an interaction among different modes, which can
result in an energy exchange among them. These nonlinear interactions are
the subject of this book. What makes the exchange of energy among modes
dangerous is that typically energy is transferred from the low-amplitude high-
frequency components of the motion associated with the high modes to the
high-amplitude low-frequency components of the motion associated with the
low modes. Thus, the modal interaction makes it possible for a high-frequency
low-amplitude excitation, which is capable of doing a lot of work on the struc-
ture in a short period, to produce a large-amplitude low-frequency response.
In the absence of modal interactions, the steady-state response of a damped
structure will consist of only the directly excited modes. While the energy
exchange may be dangerous, it can be useful if the energy can be transferred
from the desired system to a secondary system, as in the case of autopara-
metric absorbers.

Nonlinear modal interactions have been the subject of a great deal of recent
research. It has been found that, in weakly nonlinear systems where there ex-
ists a special relationship between two or more natural frequencies and an
excitation frequency, the long-time response can contain large contributions
from many linear modes (Nayfeh and Mook, 1979; Nayfeh and Balachandran,
1989; Sado, 1993; Ruijgrok, 1995). The large presence of more than one mode
generally makes the actual response more complicated, increases the number
of modal equations that must be treated, and causes the analysis to be more
difficult. Modal interactions can lead to dangerously large responses in the
very modes that are insignificant according to linear analysis. Consequently,
the use of classical transfer functions and modal analysis techniques is inap-
propriate and may lead to erroneous conclusions about the system (Busby,
Nopporn, and Singh, 1986; Zavodney, 1987a, 1991; Balachandran, Nayfeh,
Smith, and Pappa, 1994).

Most of the research on modal interactions is focused on autoparametric,
also called internal, resonances in systems where the linear natural frequen-
cies w; are commensurate or nearly commensurate; that is, the w; are related
by >, kiw; ~ 0, where the k; are positive or negative integers. This re-
lationship is called an internal or autoparametric resonance condition. The
vector k = {k1,k2,---,k,} is called the resonance vector, whereas the num-
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ber k =| ki | + | k2 | +---+ | kn | is called the order of the internal
resonance. Internal or autoparametric resonances may be activated during
free as well as driven oscillations and are responsible for the redistribution
of energy among the various natural modes. Autoparametric resonances have
been treated successfully with perturbation methods. There also exists a large
body of experimental results which are in good general agreement with the
perturbation results. Autoparametric resonances may provide coupling and
energy exchanges among the modes. Consequently, exciting a high-frequency
mode may produce a large-amplitude response in a low-frequency mode in-
volved with it in an autoparametric resonance. Autoparametric resonances
are discussed in Chapters 2-5.

In externally excited multidegree-of-freedom and continuous systems, com-
bination resonances may occur in response to a simple-harmonic excitation.
Consequently, a high-frequency excitation may produce large-amplitude re-
sponses in the low-frequency modes that participate in the combination res-
onance. In parametrically excited systems, multimode interactions can oc-
cur when the excitation frequency is near the sum or difference of two or
more linear natural frequencies. These so-called combination resonances have
been studied extensively in the literature (Evan-Iwanowski, 1976; Nayfeh and
Mook, 1979). Again, these combination resonances can lead to interactions
between high- and low-frequency modes. Combination resonances are dis-
cussed in Chapter 5.

Several recent experimental studies suggest that another type of interaction
may occur between high- and low-frequency modes. In these experiments, a
high-frequency mode was directly excited either parametrically or externally,
yet the response contained a large contribution from the first mode. The
presence of the first mode was accompanied by a slow modulation of the
amplitude and phase of the high-frequency mode with the frequency of the
modulation being nearly equal to the natural frequency associated with the
first mode. The results indicate that the mechanism for the excitation of
the first mode is neither a classical internal resonance nor an external or
a parametric combination resonance involving the first mode. Rather, the
appearance of the first mode is accompanied by a slow modulation of the
high-frequency modes. This mechanism is the subject of Chapter 6.

The interaction between high- and low-frequency modes observed experi-
mentally is of great practical importance. In many manufacturing structures
and dwellings, high-frequency excitations can be caused by rotating machin-
ery; in large floating structures, high-frequency excitations can be caused by
waves; in ships, high-frequency excitations can be caused by the propeller
blades passing the rudder; etc. Through the mechanisms discussed above,
energy from high-frequency sources can be transferred to the low-frequency
modes of supporting structures or foundations, and the result can be harmful
large-amplitude oscillations. For example, certain parts of an airplane can be
violently excited by an engine running at an angular speed that is much larger
than their natural frequencies (von Karmén, 1940). Moreover, some prelim-
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inary results (S. Nayfeh and Nayfeh, 1993) indicate that use of conventional
methods for decreasing modal interactions, such as increasing the dissipa-
tion or decreasing the forcing amplitude, may have undesirable effects. The
interaction between high- and low-frequency modes is discussed in Chapter 6.

Modern flexible structures typically have many modes with low natural
frequencies. Because these structures are rather flexible, large-amplitude vi-
brations may occur, and geometric and other nonlinearities become signifi-
cant. The nonlinearities can couple the modes and produce strong, often dan-
gerous, exchanges of energy between modes. As discussed in Chapters 2-5,
modal interactions are greatly enhanced when a special relationship between
the natural frequencies of two or more modes and the excitation frequency
exists. The nature of these frequency relationships depends on the degree of
the nonlinearity present in the system, the number of modes involved, and
the character of the excitation.

In Chapter 7, we discuss interactions resulting from the simultaneous pres-
ence of more than one mechanism, such as two two-to-one internal resonances
involving three modes, a two-to-one and a combination internal resonance, a
one-to-one and a two-to-one internal resonance, two combination resonances
involving three modes, a one-to-one internal resonance and widely spaced
modes, and two one-to-one internal resonances involving three modes, which
are in turn involved in a two-to-one resonance with a fourth mode. Lefschetz
(1956) described a commercial airplane in which the propellers induced a sub-
harmonic vibration of order one-half in the wings, which in turn induced a
subharmonic vibration of order one-half in the rudder. The oscillations were
so violent that the airplane broke up.

In Chapter 8, we discuss the construction of nonlinear normal modes of
discrete and continuous systems. We start with a discussion of the notions of
nonlinear normal modes. Then, we describe methods for constructing nonlin-
ear normal modes for discrete as well as continuous systems with quadratic and
cubic nonlinearities. We describe the method of multiple scales, the method
of normal forms, the real-valued invariant-manifold approach, the complex-
valued invariant-manifold approach, and an energy-based formulation.

Interactions between internal and parametric resonances are discussed throu-
ghout the book. Most of the cited references appeared in the English litera-
ture. For a review of the research in Japan on nonlinear oscillations of elastic
structures, we refer the reader to Yasuda (1996).
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