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Preface

The mathematical theory of networks and systems has a long, and rich
history, with antecedents in circuit synthesis and the analysis, design and
synthesis of actuators, sensors and active elements in both electrical and
mechanical systems. Fundamental paradigms such as the state-space real-
ization of an input/output system, or the use of feedback to prescribe the
behavior of a closed-loop system have proved to be as resilient to change
as were the practitioners who used them.

This volume celebrates the resiliency to change of the fundamental con-
cepts underlying the mathematical theory of networks and systems. The
articles presented here are among those presented as plenary addresses,
invited addresses and minisymposia presented at the 12th International
Symposium on the Mathematical Theory of Networks and Systems, held
in St. Louis, Missouri from June 24 - 28, 1996. Incorporating models
and methods drawn from biology, computing, materials science and math-
ematics, these articles have been written by leading researchers who are
on the vanguard of the development of systems, control and estimation for
the next century, as evidenced by the application of new methodologies in
distributed parameter systems, linear nonlinear systems and stochastic Sys-
tems for solving problems in areas such as aircraft design, circuit simulation
imaging, speech synthesis and visionics.

We wish to thank these authors, and all the contributors to MTNS-96,
for making this conference an outstanding intellectual celebration of this
area and its ability to embrace and lead paradigm shifts, a celebration which
will continue to grow in importance as we enter the next century. We also
take great pleasure in thanking Rose Brower, Bijoy Ghosh, Michalina Ka-
rina, Susan McLaughlin, Giorgio Picci, Beth Scnettler, Elizabeth SoRelle
and Sue Schenker for years of outstanding service to MTNS-96. This en-
deavor could not have succeeded without their dedication.

)

Chris Byrnes Biswa Datta David Gilliam Clyde Martin
St. Louis, MO Dekalb, Il Lubbock, TX  Lubbock, TX
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State Space Method for Inverse Spectral
Problems

D. Alpay and I. Gohberg

1 Introduction

Let H denote a differential operator of the form

(HN® = -iI5H0 - VOr@, t20, (11)

where

J= ( '3 _(}m ) and )= ( k(?)* H) ) (1.2)

Here, k(t) is a €™*™-valued function with entries in L;(0, c0). It
is sometimes called the potential of the differential operator, or the local
reflexivity coefficient function (see [10] for this latter interpretation). As-
sociated to the operator H are two important functions: the scattering
function and the spectral function.

To define the scattering function, consider for real A the C2™*™—valued
solution of the equation

- iJ%X(t, A)=V(@)X(t,A) =AX(tN), (1.3)
subject to the boundary conditions
Im —In)X(0,2) =0,  (Im 0)X(t,\) = e I, +0(1) (t — o).

Such a solution exists and is unique (see [20], [11]). It has the further
property that there exists a C™*™ matrix S()) such that

(0 In) X (¢, A) = S(V)e* 4+ 0o(1) (t — ).
The function A — S(X) is called the scattering matrix function and it

belongs to the Wiener algebra W™*™. Recall that this algebra Wm*™
consists of the matrix—valued functions of the form

Z(X)=D— / ” 2(t)eMtdt (1.4)

where D € C™*™ and z € LT"*™(IR). Note that D = limy_, 1+ Z(\);
we will use the notation D = Z(c0).
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The scattering function S has the following properties: it takes uni-
tary values, belongs to W™*™  §(o0) = I,,, and it admits a Wiener-Hopf
factorization:

S(A) = 5-(A)S5+(N), (1.5)
where S_ and its inverse are in W™*™ and S; and its inverse are in
WPX™. Here the subalgebra W™>™ consists of the elements of the form
(1.4) for which the support of z(t) is in R_, and W™ consists of the
elements of the form (1.4) for which the support of z(t) is in IRy.

The inverse scattering problem consists in recovering the function k
(and hence the potential) from the scattering function S. There is a rich
literature about this problem. We follow the approach suggested in [18],
(19], [20].

We now turn to the spectral function. The operator H defined by (1.1)
is selfadjoint when restricted to the space Dy of C*™—valued functions f
which are absolutely continuous and which satisfy the initial value (I,, —
I,)f(0) = 0. Let W be a €™*™—valued function which is continuous
on the real line and for which W(X) > 0 for all real A\. It is called a
spectral function for the operator H if there is a unitary mapping U :
L2™(0,00) — LT*(W) such that (UH f)(X) = AU f)(A) for f € Dy, where
L7*(W) is the Hilbert space of C™~-valued measurable functions g such that
ffooo g(t)*W(t)g(t)dt < co. If S given by (1.5) is the scattering function of
the operator (1.1), then the function

W) =S-(\)"1s_(\)~* (1.6)

is a spectral function of H, and the map U is given in terms of the contin-
uous orthogonal polynomials of M.G. Krein (see [17], [11]). The definitions
of these functions and of the map U are given in the next section. We will
call this function the spectral function of the operator H; it is uniquely
determined from the scattering function S and the condition W (o0) = Ipy,.
Let W € W™ with W(oo) = I,. The function W admits Wiener—Hopf
factorizations W = W, Wi = W_WZ*, where W_ and its inverse are in
W™ and W_ and its inverse are in W™*™. The function W is the
spectral function of the differential operator (1.1) with scattering matrix—
function S = W-'W,. The inverse spectral problem consists of recovering
the function k from the spectral function W.

We will also consider the case where the reflection coefficient matrix
function R(A) is known and rational. We recall that R(\) = X5; (0,) X1
(0,))~* where X = (X;;) is the (unique) €>™**™ solution of equation (1.3)
subject to the asymptotic property

—iAtIm 0
xn=( g™ g, ) o - oo

In this paper we present explicit formulas for £k when the spectral matrix
function (or equivalently the scattering matrix function or the reflection co-
efficient function) is rational, and give applications of these formulas to the
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equivalence between Krein’s and Marchenko’s approach to inverse problems
in the rational case. This leads us to a new relationship between the coeffi-
cient matrix functions of the Carathéodory—Toeplitz and Nehari extension
problems. We also discuss a solution of the direct scattering problem in the
rational case which turns out to be related to a problem of partial realiza-
tion considered in [14]. In general, the results of this paper are obtained
by a method which is based on the state space method from system theory.
The main results with complete proofs can be found in the papers [2], [1],
(3], [5], [4] and [6]. A topic not discussed here is the discrete case (see [1]).

Some words on notation: we denote by C™*" the space of m-rows and
n—columns matrices with complex entries, and €™ is short for C™*!; the
identity matrix of C™*™ is denoted by I,,,, or simply by I. The adjoint of
a matrix A is denoted by A*.

2 The Approaches of Krein and Marchenko

The approach of M.G. Krein’s to the inverse spectral problem is as follows:
let

W) =1, - / ” h(u)e*“du

—00

with h € LT"*™(IR) be the spectral function. Since W (A) > 0 for all real
A, the integral equation

w(t.9) = [ Wy -un ot =ht-9,  tsebn @

has a unique solution ~,(t,s) for every 7 > 0. Then, the potential k(t) is
given by the formula

k(t) = —2i7v2:(0, 2t). (2.2)

Let

. 2t .
P(t,\) = e (Im +/ Yot (u, O)e_”\“du) (2.3)
0
and
. 2t .
R(t, A) = ** (Im + / Y2t (2t — u, 2t)e_”\"du) . (2.4)
0

The unitary map U between the spaces L2™[0,00) and LJ*(W) alluded
to in the introduction is given by

UHW=VEr [ (P,-N RENfOE  (29)
0
Marchenko’s approach is concerned with inverse scattering. Let

SA) =1, - / o(u)e™¥du A eR

—00
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be the scattering matrix function where o € LT"*™(IR), and set

§(u)=( 0 "((’)‘)' ) (2.6)

o(u)

Marchenko’s approach consists in solving the equation
(o]
M(t,s) — &+ s) — / M(t,u)é(u + s)du =0 (2.7)
t

for 0 <t < s < oo (see [20, equation (1.10)]) with the unknown matrix
M(t,s) = (mij(t,s))ij=1,2 (where the block m;; are C"*"-valued).
The potential is then given by k(t) = —2im21 (¢, ).

3 Review of the State Space Technique

We recall a number of facts from the theory of realization of matrix—valued
rational functions. Any €™*™-valued rational function W, analytic on the
real line and at infinity with W(oco) = I,,,, can be written as

W(A) = Im + C(\I, — A)~'B, (3.1)

where A € C**", B € €**™ and C € C™*".

Such an expression (3.1) is called a realization of W. The realization
is called minimal if the number n in (3.1) is as small as possible and the
minimal such n is called the McMillan degree of W. Two minimal realiza-
tions of W are similar: namely, if W()) = I, + C;(\I, — A;)"'B;, i = 1,2
are two minimal realizations of W, there exists a (uniquely defined and
invertible) matrix S € C™*™ such that

A2 = SA15_1 B2 = SB1 Cz = Cls—l. (32)

For these facts and more information on the theory of realization of
matrix—valued functions, we refer to [8] and [21].

If W is a €™ *™-valued function analytic on the real line and at infinity
with Z(c0) = I,;,, with minimal realization (3.1), it is of the form (1.4) with

iCe~"A(I,, —P)B u>0
z(u) =

. (3.3)
—iCe~™APB u<0

where P is the Riesz projection corresponding to the eigenvalues of A in
C;. The function z has absolutely summable entries and thus Z is in
the Wiener algebra and it is therefore meaningful to consider the case of
rational scattering and spectral functions.

A factorization R = R_Ry of R into two C"*"—valued functions ana-
lytic at infinity is called a (right) canonical (Wiener-Hopf or spectral) fac-
torization if R_ and its inverse are analytic in the closed lower half plane



