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PREFACE

This volume contains the proceedings of the NATO Advanced Research
Workshop on "Modelling, Robustness and Sensitivity Reduction in Control
Sytems" which was held at the University of Groningen, the Netherlands,

during the first week of December, 1986.

Modelling is a fundamental and difficult problem in all the sciences;
to design a controller one needs a model. While for some applications one
has a good physical model, often one only has measurements of the inputs
and outputs of the system available. Modelling from measurement data was
one important theme of the workshop. To control theorists, this has
traditionally meant the stochastic approach of "System Identification" but

here the newer deterministic approaches shared the spotlight.

Of course all models are approximate, but one sometimes requires a
lower order, simpler model which still retains the main features of the
original model with respect to the problem of control design.
Approximation in this sense is often called model reduction and this theme
was discussed during the workshop. Given that we only have approximate
models available, the concept of robustness has always played an important
role in controller design. Robust controllers are those which can control
not only the given nominal model, but also neighbouring perturbations
while at the same time guaranteeing an acceptable performance; they are
robust with respect to model uncertainties. Typical performance
requirements are tracking ability, stability and the suppression of
disturbances, usually with respect to certain frequency bands, and so
another very desirable property of a controller is that its performance
has a low sensitivity to external disturbances. Robustness and sensitivity

reduction of controllers were two related themes of the workshop.

During the last decade major advances have been made in the theory of
approximation (model reduction) and robustness and sensitivity reduction
of controllers by exploiting known results in two areas of mathematics: in
classical mathematical analysis such as the work in interpolation theory
by Nevanlinna, Pick, Fejér and Carathéodory, and in more recent
developments in Operator Theory, such as the work of Adamjan, Arov and
Krein in the seventies. This synthesis has resulted in a new research area
in Systems and Control Theory known as - Control which was the main

theme of this workshop and is closely related to the other themes of
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approximation, robustness and sensitivity reduction. These proceedings contain
new contributions in these areas which range from abstract mathematical papers
to some very concrete and challenging applications; an interesting

interplay between mathematics and engineering.

As is well known, NATO workshops are primarily supported by the NATO
Scientific Affairs Division and we are grateful to them for their
sponsorship and generous financial support. This workshop was designated
as belonging to the "Double Jump" programme, which means that the sectors:
university, industry and government research institutions should all be
involved in the workshop. A glance at the list of participants will verify
that this was the case as far as participation in the scientific part of
the workshop is concerned. With respect to the financial support, we have
the pleasure of thanking the following long list of government agencies
and companies: the Dutch Academy of Sciences, the Dutch Organization for
the Advancement of Pure Scientific Research, the British Science and
Engineering Research Council, the University and the Province of
Groningen, de Nederlandse Aardolie Maatschappij (the Dutch 0il Company),
de N.V. Nederlandse Gasunie (the Dutch Gas Company), Hollandse

Signaalapparaten B.V. and Hoogovens Groep B.V.

Finally we would like to thank the Mathematics Institute of the University
of Groningen for the support in organizing the workshop in particular the

assistance of the workshop secretary, Janieta Schlukebir.
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Ruth F., Curtain
for the International Committee:

Prof. R.F. Curtain, Mathematics Institute, University of Groningen

Dr. K. Glover, Dept. Engineering, University of Cambridge, U.K.

Prof. B. Francis, Dept. Engineering, University of Toronto, Canada

Prof. J.C. Doyle, Honeywell SRC, MN 17-2367, 2600 Ridgeway Parkway,
Minneapolis, U.S.A./ Dept. Electrical Engineering,
California Institute of Technology, Pasadena, CA 91125, USA.
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1. Introduction

This paper is intended as a tutorial on the most basic H s control problem.
The set-up is linear, time-invariant, finite-dimensional, continuous-time. The main
theme is that the theory is most simply and elegantly developed in the framework
of operators, while computations are most easily performed using state-space
methods. (Thus state-space methods serve merely as slaves in an input-output set-
ting.) The results are summarized in the form of algorithms, primarily to demon-

strate that the computations can be done using off-the-shelf software.

Pioneered by Zames (1981), H.; optimization in control theory has been
developed by many researchers and from several viewpoints. The state-space
approach to computations was initiated primarily by Silverman and Bettayeb
(1980) and Doyle (1984). The reader may consult Francis and Doyle (1987) and

Dorato (1987) for reference lists and historical accounts.

The main text consists of five parts. In Section 2 the standard problem is

posed and the model-matching problem (MMP)

miniQInize ”Tl — T2 QT3 "oo

is offered as an example. Here T; and @ are real-rational H_ -matrices. The reader
is then reminded that the standard problem can be reduced to MMP using the

familiar parametrization of Youla, Jabr, and Bongiorno (1976).

The rest of the paper deals with MMP. The classification scheme of Limebeer
and Hung (1986) is introduced, yielding three model-matching problems, MMP(i)
(i=1-3), of increasing difficulty. In general one solves these problems by first com-
puting the minimal model-matching error (the minimum norm above) and then
computing an optimal Q.

Section 3 begins with a discussion of when an optimal @ exists. Mild sufficient
conditions are given and then a three-step, high-level algorithm is developed for
solving MMP(1). The most difficult step is the Nehari problem of approximating

an L.,-matrix by an H_ -matrix.

In Section 4 the Nehari problem in the scalar-valued case (T; and Q are

scalar-valued functions) is solved completely using the theory of Sarason (1967) and



Adamjan, Arov, and Krein (1971), with state-space formulas by Silverman and Bet-
tayeb (1980).

Section 5 deals with the factorization of a rational matrix. The canonical fac-
torization theorem of Bart, Gohberg, Kaashoek, and van Dooren (1980) is presented
and used to obtain spectral factorization, inner-outer factorization, and J-spectral

factorization.

Finally, in Section 6 the Nehari problem in the matrix-valued case is solved
using the theory of Ball and Helton (1983), with state-space formulas by Ball and
Ran (1986).

The notation is fairly standard: L, is the space of essentially-bounded matrix
functions on the imaginary axis; H, and H,, are the Hardy spaces for the right
half-plane; and prefix R denotes real-rational. For a state-space realization,

[4, B, C, D] stands for the transfer matrix D + C(sI—A)™B.

2. The standard problem and the model-matching problem

The standard set-up is shown in Figure 1. In this figure w, u, 2, and y are
vector-valued signals: w is the exogenous input, typically consisting of command
signals, disturbances, and sensor noises; u is the control signal; z is the output to be
controlled, its components typically being tracking errors, filtered actuator signals,
etc; and y is the measured output. The transfer matrices G and K are, by
assumption, real-rational and proper: G represents a generalized plant, the fixed
part of the system, and K represents a controller. Partition G as

Gll G12

o =
Gy Gy

Then Figure 1 stands for the algebraic equations
Zz = Guw + G12U
Yy = Gle -+ G’22u

v = Ky.
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To define what it means for K to stabilize G, introduce two additional inputs,
v; and vy, as in Figure 2. It simplifies the theory to guarantee that the nine
transfer matrices from w, vy, vy to 2z u, y exist and are proper for every proper
real-rational K. A simple sufficient condition for this is that G,y be strictly proper.
Accordingly, this will be assumed hereafter. If these nine transfer matrices are
stable, i.e. they belong to RH,,, then we say that K stabilizes G. (This is the usual
notion of internal stability.)

The standard problem is this: find a real-rational proper K to minimize the
H,-norm of the transfer matrix from w to z under the constraint that K stabilize
G. Observe that the transfer matrix from w to z is a linear-fractional, hence non-

linear, transformation of K:
2=[Gy + G K(I-GpK)™ Gy w.

There are several well-studied special cases of the standard problem, for exam-
ple the weighted sensitivity, the mixed sensitivity, and the robust stability prob-
lems, but perhaps the simplest special case is the model-matching problem, abbre-
viated MMP. In Figure 3 the transfer matrix T, represents a "model" which is to
be matched by the cascade T, @ T3 of three transfer matrices T,, T3, and Q.
Here, T; (#=1-3) are given and the "controller” Q is to be designed. It is assumed
that T; € RH,, (f=1—3) and it is required that @ € RH,.,. Thus the four blocks

in Figure 3 represent stable linear systems.

For our purposes the model-matching criterion is
sup {llzlly: w € Hy, llwll, <1} = minimum.

Since the Hj-induced norm equals the H.,-norm of the transfer matrix, this is

equivalent to
IT, — Ty @ Tsll, = minimum.

This model-matching problem can be recast as a standard problem by defining

Tl T2
ool 7
K :=—Q,

so that Figure 3 becomes equivalent to Figure 1. The constraint that K stabilize G



is then simply that @ € RH,.

This version of the model-matching problem is not so important per se; its
significance for us arises from the fact that the standard problem can in fact be
transformed into the model-matching problem, which is considerably simpler. How
to do this is by now standard: one parametrizes all K ’s stabilizing G as a linear-
fractional transformation of a free parameter matrix @ in RH; then the transfer
matrix from w to z is an affine function of @, ie. it’s of the form T; — T,QT;.
The theory behind this conversion is omitted; however we summarize the pro-
cedure in the form of a state-space algorithm, due primarily to Doyle (1984), to
compute T; (1=1-3) from G.

The algorithm starts with a minimal realization of G:

G(s)=[4, B, C, D].

Since the input and output of G are partitioned as

the matrices B, C, and D have corresponding partitions:

B=(B; Bjy]
C,
C= C,
> Dy; Dy
" |Da1 Dgf

Then
G’,-]-(s) = [A, B]', C;, D,‘j] , 1=1,2.

Note that Dyy=0 because Gy, is strictly proper.
Procedure 1

Step 1. Choose F and H so that

AF:=A +B2F, AH:=A +HCZ



are stable.
Step 2. Set
Ap —B,
A=10 44
B,
B=|p +Hp,,

C=[C1+DpF —D,F]
Tl(s) = [A’ E.a _Qa Dll]
Ty(s)=[Ap,B2,C1+D12F,D1s)

T3(s)=[An,B1+HD3;,C3,Dy].

Limebeer and Hung (1986) introduced a useful classification scheme for MMP.
It involves the relative dimensions of the matrices T; and Ty. Let’s say a matrix is
wide if the number of its rows is < the number of its columns, and strictly wide if
the inequality is <. Similarly for tall and strictly tall. The classification scheme is
this:

MMP(1): T, is wide and Ty is tall

MMP(2): T, is strictly tall or Ty is strictly wide (exclusive or)

MMP(3): T, is strictly tall and T, is strictly wide.

It turns out that MMP(2) is harder than MMP(1), and MMP(3) harder than
MMP(2). Difficulty here refers to the complexity of computing optimal Q’s.

3. Existence and a high-level algorithm for MMP(1)

To each @ in RH, there corresponds a model-matching error,

IT)—T3QT;ll,,. Let o denote the infimal model-matching error:
a:=inf{llT;—T, QT3 QERH,,}. (1)

A matrix @ in RH_, satisfying



O(=”T1—‘T2QT3”00

will be called optimal.
This section is first concerned with the question of when an optimal Q exists.

This theorem provides a sufficient condition:

An optimal @ exists if the ranks of the two matrices Ty(jw) and T3(jw) are

constant for all 0<w<co.
These rank conditions are not necessary for existence, but from now on we assume
they hold. To see the underlying idea in this theorem, first note from (1) that
a=dist (T, T;RH,, T3) 2
where
T;RH,, T3:={T, QT3: QERH,,}.
Since RH,, CH_, we have
a>dist (T, ToHo, T3). (3)
But since T is itself real-rational, the two distances in (2) and (3) are equal, so
a=dist (T}, TyHo T3). (4)

The rank conditions above guarantee that ToH,, T3 is weak-star closed in H,, (see
for instance Theorem IL.7.5 in Garnett (1981)), and this in turn implies that the dis-
tance in (4) is achieved, i.e.
a=IT; —Ty,QT;ll

for some @ in H,,. Proving that the distance is achieved by a real-rational Q is
harder, and in fact hasn’t been completely worked out. In the general case, the
constructive procedure for MMP yields a @ in RH,, so that T, QT}; is arbitrarily
close to T.

Deep results on uniqueness have recently been obtained by Foias and Tannen-
baum (1986).

There’s a simple formula due to Young (1986) for o as the norm of a certain

operator. Define two subspaces X and Y of Ly,

X:=T;'H,



