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PREFACE

To facilitate the application of physical theories in practice, researchers today must
develop new methods not only for the systematization and interpretation of increas-
ing experimental data but also for the simplification, unification and combination
of already existing and well-functioning theories. A step toward this goal is served
by the present text which attempts to compose a general theory of classical field
incorporating continuum mechanics, electrodynamics and thermodynamics. Al-
though looking mainly at the mechanical motion of media, the methods described
by this text point far beyond the rheological applications (as indicated in the ti-
tle) to an exact theory of non-equilibrium thermodynamics, thus making possible
a unified description of mechanical, electromagnetic and thermic phenomena to-
gether with the interrelations between them. As a result, this theory offers a strong
organizational force and an extraordinarily wide range of applications. Knowl-
edge of non-equilibrium thermodynamics is indispensable for the physicists dealing
with transport processes, physical chemistry, plasma physics or energetics, for the
chemical engineer and even for biophysicist and biologist. To the aforementioned
enumeration can be added electrical, mechanical and civil engineers as well as ar-
chitects engaged in dielectrics, structural materials, colloid agents or even in liquid
crystals. This wide range of application of irreversible thermodynamics arises from
the fact that in nature any macroscopic process is irreversible.

This book deals both with the complicated and far-reaching forms of motion of
the materials continuously filling up the universe and with establishing principles in
Joining classical field theoretical methods with irreversible thermodynamics, using
macroscopic methods but not forgetting the corpuscular structure of the agents.
By elaborating on these methods in detail, the proper means for the quantitative
description of irreversible phenomena—means formerly lacking from the viewpoint
of generality, mathematical exactness and direct applicability—are now evident.

The results outlined in this book speak for themselves. The general feature of
the correlations presented and—at the same time—their simplicity will surprise
even the reader familiar with literature of the topics. To those not acquainted
with the subject matter of deformation and flow or with the relevant optical and
electromagnetic phenomena, it serves as an introduction.

The harmonic coordination of the succinctly expressed vast knowledge assures—

beyond the aesthetic experience—its comprehension, understanding and immediate
applicability.
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Successful striving for mathematical simplicity is an advantage of the book. The
author avoided complicated methods too often seen in the literature (for exam-
ple, he did not apply the Ricci calculus that—considering the Euclidean structure
of surrounding classical space—has an advantage only for numerical solutions of
special problems). The importance of the topics presented and the precision and
applicability of the new thermodynamic theory (the so-called dynamic variables
introduced by the author) will usher in a new epoch in the literature of the topics.

Istvdin Gyarmati
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INTRODUCTION

Thermodynamics as a field theory has a history of a few decades only. Its methods—
we daresay—have been elaborated but are not final at all. They are changing and
transforming even at present. At the same time, the rapid development in technol-
ogy increases the demand for a unified and general theory of classical field incor-
porating continuum mechanics, electrodynamics, and thermodynamics. The need
for practical applications has led to the development of several methods and ideas
differing from each other according to the different branches of applications, never-
theless, overlapping and similarity are not rare. Unification is rather hard, partly
due to the different intentions, partly due to the enormous amount of knowledge
involved.

I intend to contribute to the unification following Gyarmati [75] who made the
first consistent steps in his book in 1970. The starting point of my work is the field
theoretical view of thermodynamics—founded by Onsager in 1931 [137, 138]—of
irreversible processes. | have fitted the aspects of non-equilibrium thermodynamics
to classical and modern concepts and methods of mechanics and electrodynamics.

In this work I, of course, had to compromise as well. For example, I avoid the
difficulties due to the complexity of mathematical apparatus of general relativity
(and not to be hindered in my work by the undeveloped theory of relativistic ther-
modynamics), I limited my considerations to slowly moving media and accordingly
used the correlations of electrodynamics in approximate form.

As my work may only be the first step in the elaborating of this theory, in this
book I give only those consequences I deemed the most important. First of all, the
linear constitutive equations of Onsager’s thermodynamics are applied (although
from time to time the linear and non-linear alternatives come in question as well,
but only to show the possibilities for continuing this work). The majority of meth-
ods and concepts applied in my work belong to non-equilibrium thermodynamics:
however, I relied considerably on the methods of continuum mechanics, rheology
and electrodynamics. For example, I borrowed the often applied complex formalism
from the linear theory of electric networks.

The composition of this book reflects the synthesizing character of my work.
Chapters 1 and 2 include the principles of continuum mechanics to the extent
needed to expound a unified theory by giving the definitions taken from continuum
mechanics together with their correlations. The apparatus required to consider the
effects of gravitational and electromagnetic fields is so defined that it can be applied
even in the case of micropolar media.

Chapter 3 outlines the well-known methods relating to stress and strain. This
Chapter aims partly at summarizing the experimental results and partly at indi-
cating the ideas taken from rheology and continuum mechanics, respectively.
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Chapter 4 includes the setting forth of irreversible thermodynamics, acquaint-
ing the reader with balance equations and “linear” laws of irreversible thermody-
namics as well as with the Onsager-Casimir reciprocal relations, and, further, with
Gyarmati’s variational principle. The new theory and applications of dynamic vari-
ables is described in this chapter. This chapter sums up some results of irreversible
thermodynamics partly reached by me, partly born while writing this book, so their
direct application—at least as to rheology—could hardly come on as yet.

Chapter 5 is based on the hypothesis of local equilibrium. It also incorporates
theories of classical elasticity, thermoelasticity and Newtonian fluids into the frame-
work of thermodynamics.

Chapter 6 studies media far from equilibrium, rejecting the hypothesis of local
equilibrium. New scientific results follow the solution of the linear constitutive equa-
tions of Onsager’s thermodynamics, thus enabling models of rheology to begin now
from a single uniform basic principle. The viscoelastic and plastic response, Ost-
wald’s curve characterizing the generalized Newtonian fluids, the effect of creep, the
elastic features preceding plastic flow, the basic interrelations of rheooptics, etc. are
interpreted with phenomenological methods, quantitatively. The consistent char-
acter of the method is shown by the self-evident theoretical proof of the empirical
Cox—Mertz rule [30]. It is confirmed that its limit of validity coincides with that of
strictly linear rules. This book over-rides the limits of the linear theory, but only
in the simplest case to show the direction for the future.

Chapter 7 deals with electromagnetic phenomena including the irreversible ther-
modynamic theory of streaming birefringence and photoelasticity. Here the raison
d’étre of quasi-linear theory is verified.

Chapter 8 outlines some practical applications of the aforesaid theory. Sev-
eral colloids, polymers as well as the liquid crystals are described here. In case
of colloids—after thermodynamic considerations—the equivalent theory based on
microscopic structure is mentioned. The two methods do not exclude each other; in
fact, the microscopic considerations complete well those of thermodynamics giving
the graphic meaning of phenomenological conductive coefficients. Here I draw the
attention of the reader to the thermodynamic method which gives the mathemati-
cal form of the functions studied more briefly and elegantly than the mathematical
methods based on partial differential equations that are essential for other approx-
imations; moreover it is free from the uncertainties due to not perfect reliability in
each case separately of hypothesis regarding the microscopic structure of a partic-
ular material.

The Appendix sums up the applied mathematical apparatus, but only to facili-
tate the interpretation of used notations.

It is a pleasure to thank Prof. I. Gyarmati for his introducing me—at a high
international level—to the basis of irreversible thermodynamics. During my three-
decade research work, he always inspired me to reach considerable results, and
placed his extensive knowledge at my disposal.

The Author is deeply obliged to the Hungarian National Scientific Research
Fund, OTKA (1949, T-17000) and the EC (Contract No: ERBCIPDCT 940005)
for supporting the research work included into the book, moreover, the preparation
of the manuscript and the edition.



CHAPTER 1

KINEMATICS
1.1. Motion of continua

The motion of a body is kinematically known if we know the position of any point
at any time. Many methods are known to label the points of the body. One
possibility is to use the position occupied at a given time ¢y to denote the moving
point. To give the positions, some kind of frame of reference is applied. The usual
mathematical means are a system of coordinates fixed to a frame of reference. The
mode of selecting the reference and coordinate system may be optional in principle:
however, the proper selection can simplify the calculus to be done. We can use
Cartesian coordinates in Euclidean space; the vectors of the Euclidean space are
suitable for indicating positions.

Select a moving body and choose its point Py. Denote the rectangular coordi-
nates of the point in time ¢o with z1, z3, 3 in the coordinate system defined by
orthonormal base vectors (unit vectors) ji, jo, js. Then call the vector

X = X1j1 + Xaj2 + X3js (1.1)

the position vector of point Py in time ty. Denote the coordinates of points Py in
time ¢t with z1, 5, 3. The vector

x = 21j1 + z2)2 + z3j3 (1.2)

is the position vector of point Py. It is changing in time. We can regard the motion
of point Pj as kinematically known if we know the function

x = x(t). (1.3)

If we choose another point P instead of point Py then the vector X will be quite
different and even the function x = x(t) will be replaced. Therefore, we can say
that the position vector x depends not only on time but on the point whose motion
it describes. As we apply the X vector to specify the points of the body, we can
mathematically give the motion by the so-called motion function

x = x(X, ). (1.4)

We can call the numbers z1, x5, 23 as Eulerian or space coordinates and the num-
bers X1, X2, X3 as material or Lagrange coordinates [6, 29, 44, 81, 109, 169]. The
mapping (1.4) is assumed to be single valued and to have continuous partial deriva-
tives except possibly at some singular points, curves and surfaces. Furthermore, its
Jacobian
Szy 9z; Bz
j= O(@1,22,85) _ | G0t oxl ory (1.5)
0(X1, X2, X3) g; ?ﬁ; g‘f_
X, X2 X3
is positive, i.e.,

0<j<oo. (1.6)
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This inequality physically means the indestructibility of the material. It shows
that during motion the body of finite volume was always of finite volume and will
remain under any circumstances. To understand this, consider an infinitesimal
parallelepiped with edges dX;, dX3, dX3 around the point X;, X3, X3. During
the motion, the edges of the parallelepiped dX;j;, dX5j2, dX3j3 deform to edges
??Q)’?‘del’ aa—;(‘ﬁng, f—;&dX;;, while the parallelepiped remains parallelepiped, the
volume of which can be given by

ox ox ox

In coordinates, it makes

oz, oz, oz,
X, X2 X3
oz oz Az .
— | Z£22 2 g2 —
dV = |22 222 022 14X dX,dX3=jdVy (1.8)
L A3 dr3
X, X2 X3

where dVj is the original volume in time to. It is very important beyond the
fundamental physical meaning that the inequality (1.6) assures the invertability of
the deformation function, i.e., the inverse function

X = X(x,1) (1.9)

exists.

In many important cases, making distinction between certain points is only of
theoretical importance: therefore the use of spatial or Eulerian description is com-
mon, especially when discussing liquids. This means that we regard the motion as
known if we know the velocity as a function of time and place:

v = v(x,t). (1.10)

The connection between these two kinds of description can be summed up as follows:
The time derivative of the motion gives the velocity in function of time and starting
point:
0x(X,1t)
v= ——=
ot

However, the starting point can be given with the help of (1.9) as a function of the
instantaneous position and time. So considering (1.9), we turn (1.11) into (1.10) as

, (1.11)

X(x,t),t
v BEEDA e, (1.12)
ot
Doing the reverse—from (1.12) to (1.04)—is more complicated. Let us regard the
function (1.10) as a vectorial differential equation for the position of a selected point
Py
dx

a—:v(x,t). (1.13)
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In the general solution, three arbitrary numbers appear, the value of which are
determined by the initial condition

x =X, if t =y, (1.14)
In this way, we can get the motion function
x = x(X,t).

From the aforesaid it can be seen that from a physical point of view the two de-
scriptions are equivalent: we can change over from one to the other at any time.

1.2. Strain

The motion of a body, as we mentioned before, is described in general with a func-
tion (1.4). As not any motion of the body results in deformation, it is more precise
to apply the term “motion” instead of the frequently used term “deformation”.

A characteristic of motions without strain is that during motion the distance
between any pair of points remains unchanged. These motions are called rigid
body motions.

Let us examine which of the functions (1.4) indicate motion without strain.
Consider two different, but otherwise arbitrary points of the medium P; and Ps.
The distance between them does not change, so

(x1 — x2)% = (X1 — X5)? (1.15)
that can be written as
3 3
D (@i — ) =D (X1s — Xay)? (1.16)
i=1 J=1
in rectangular coordinates. Making use of the inverse function (1.9), (1.16) becomes:
3 3
Z(l‘h‘ ——:L'g,')z — Z[Xl_](Xl,t)—XZ_](x2,t)]2. (1.17)
i=1 J=1 :

As the point P; is arbitrary, this equation holds for any x;; and also the partial
time derivatives with respect to zq; of the right and left sides are equal:

3

0X
:L'l,'—-J:Q,':Z(XlJ—XQJ) F) 1‘.’. (1.18)
J=1 T1i
Introducing the form
0X
Qis = 5= (1.19)
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and rearranging (1.18), we can write

3 .
Toi =21+ Y Qis(X2s — X17) (1.20)
J=1
whose vector form is
X9 = X1 +Q(XQ—X1). (121)

The Q;; quantities (i.e., the tensor Q) does not depend on how point P, has been
chosen: namely, its components can be calculated by (1.19) only from the coordi-
nates belonging to point P;. Exchanging P, and P, we obtain

X9 =X1+Q/(XQ—XI) (122)

being fully similar to (1.21) where Q does not depend on the selection of point P;.
The equivalence of (1.21) and (1.22) results in Q = @', i.e., Q is identical for any
P; and P,.

On the basis of (1.15) and (1.21), the tensor Q leaves the absolute value of any
vector unchanged. Based on this and using the equations

(QA)’ =A%  (QB)’=B%  [Q(A+B)*=(A+B),
it is seen that tensor Q leaves the scalar product of any two vectors unchanged:

(QA,QB) = (A, B), (1.23)

so @ is orthogonal, i.e., QT = Q="' and, therefore, QQT = 8. On the other hand,
it can be understood that during any motion given by the function

x = a(t) + Q)X (1.24)

(Q orthogonal tensor), the distance of any two points is constant. The class of
functions which do not result in strain is thus evident. The a(t) function shows
the translation of the body, while the tensor Q(t), the rotation. The Q(t) may not
mean reflection as the determinant of reflections is —1; and the determinant of Q (%)
is non-negative in accordance with (1.6).

The motions which can be written in a form similar to (1.24)

x=a(t) +zX (1.25)

(where  is not orthogonal) are called homogeneous deformations.
The tensor x is called the deformation gradient. The deformation gradient de-
scribes the strain and rotation of an environment of point Py.
To separate the rotation and strain, Cauchy’s polar decomposition theorem is used.
On the basis of this theorem, any non-singular, and invertible second order tensor
x can be factorized in form
z=RD =dR (1.26)
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where D and d are symmetric tensors whose proper values are positive, and R is
an orthogonal tensor, i.e., the relations

D =DT, d=4d", RRT =6 (1.27)

hold. The decomposition is unique.

By analyzing the deformation gradient tensor on the ground of polar decompo-
sition, it is seen that R shows the rotation while D and d, respectively, the local
deformation in the sense that in a rotation-free case R, in a strain-free case D
and d equal the unit tensor. Indeed, at a motion without strain, the deformation
gradient is orthogonal, i.e., on the basis of polar decomposition

t=Q=R6=06R=R (1.28)

can be written.
To simplify the notation, we use the following conventions:

a) the indices denoted by minuscules refer to z coordinates; those denoted by
majuscules refer to X coordinates.

b) in every case when an index occurs twice in an expression we omit the sign of
summation ) and sum up from 1 to 3 for the dummy index (Einstein convention).

c) the indices following the comma mean the partial derivatives with respect to
the relevant variable.

Now study the case where the deformation gradient tensor does not depend on
position, and the orthogonal factor received during polar decomposition corresponds
to the unit tensor.

Then, according to (1.25), we can write the motion as
x=a(t)+ D)X (1.29)
and after a transformation to principal axis as

z1 = a1 + D1 Xy,
zy = az + D2 X, (1.30)
z3 = asz + D3 X3.

where Dy, Dy and D3 indicate the eigenvalues of the tensor D. This means that,
apart from translations determined by ay, as, as, stretchings parallel to the prop-
ervectors have also appeared. We should image the whole process so that, first, we
realize the three translations in arbitrary sequence and, afterwards, the stretching.
So, in case of homogeneous deformations, when the function (1.4) can be given in
form

x = a(t) + R()D(H)X, (1.31)

the instantaneous deformation is defined by the tensor D. The motion to the
present configuration can be decomposed to a succession of deformation, rotation
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and translation. The decomposition in equation (1.31) corresponds to this succes-
sion: D defines the deformation, R the rotation and a the translation. Of course,
the order of the steps of the motion is important as can be seen

r=a+RDX =a+dRX =RD(A+X)=

Here we have introduced the notations
A =D"'RTa, a* = RTa, A*=RD 'RTa
as well as having used the identity
d=RDR"

due to polar decomposition. We mention that tensor D changes during motion, as
do the directions of its propervectors which means we can regard the foregoing as
an instantaneous exposure. The considerations on homogeneous deformation can
be applied for arbitrary motion. For that, only a sufficiently small neighborhood of
a selected position X should be regarded.

It is important to mention that the resultant of two sequential deformations
without rotation is generally not a strain without rotation as the product of two
symmetric tensors is generally not symmetric. The situation is quite different if the
deformations are small, i.e., when the tensor D describing the deformations slightly
differs from the unit tensor. In this case it is advisable to introduce the notation

D=6+E. (1.33)

Tensor E should be called the deformation tensor, as it is the zero tensor in the case
of motions without strain. In case of two sequential deformations without rotation,
we get the relation

$2(5+E1)(6+E2)N6+E1+E2 (134)

for the resultant deformation gradient, if we neglect the product E; E, due to its
smallness. The sum of two symmetric tensors is, however, also symmetric, so we
can regard the resultant deformation as the sum of two strains. The formula (1.34)
can be applied even in cases when the small strains are accompanied by rotations.
In this case the resultant deformation gradient is determined from the equation

z = Ry(6 + E2)Ri (0 + E\) = RyR, (6 + RTE,R, + E)) (1.35)

which shows that the deformation tensors can be added even now; however, due
to the rotations, a common reference-frame should be provided. The additivity of
small deformations tempts one to believe that any deformation can be composed
of small deformations. Although this misconception is very common in the old
theory of infinitesimal deformations, it is, nevertheless, false as the sum of the
terms neglected from (1.34) is not negligible anymore in case of finite resultant.



