 COMPUTER ORGANIZATION

- & DESIGN -

THE HARDWARE / SOFTWARE
INTERFACE

DAVID A: PATTERSON - JOHN L- HENNESSY

Computer Organization and Design

THE HARDWARE/ SOFTWARE INTERFATCE

John L. Hennessy
Stanford University

David A. Patterson
University of California at Berkeley

With a contribution by
James R. Larus
University of Wisconsin

Morgan Kaufmann Publishers, Inc.
San Francisco, California

Senior Editor: Bruce M. Spatz
Production Manager: Yonie Overton
Editorial Coordinator: Douglas Sery
Copyediting: Steve Hiatt and Gary Morris
Text Design: Ross Carron Design
Iustration: Alexander Teshin Associates
Composition/Color Separation/Postscript
Programming: Edward W. Sznyter, Babel Press
Cover Design: David Lance Goines
Additional Cover Mechanical Art: Patty King
Chapter Opener lllustrations: Jo Jackson
Indexing: Steve Rath
Proofreading: Gary Morris
Electronic Prepress: The Courier Connection
Printer: Courier Corporation

Morgan Kaufmann Publishers, Inc.
Editorial Office:

340 Pine Street, Sixth Floor

San Francisco, CA 94104

© 1994 by Morgan Kaufmann Publishers, Inc.
All rights reserved
Printed in the United States of America

97 96 95 94 5432

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior
written permission of the publisher.

Advice, Praise, and Errors: Any correspondence related to this publication or intended for the authors
should be addressed to the editorial offices of Morgan Kaufmann Publishers, Inc., Dept. P&H APE. In-
formation regarding error sightings is encouraged. Any error sightings that are accepted for correction
in subsequent printings will be rewarded by the authors with a payment of $1.00 (U.S.) per correction at
the time of their implementation in a reprint. Electronic mail can be sent to errors@cs.berkeley.edu.

Instructor Support: For information pon the SPIM software simulator and other instructor materials
available to adoptors, please contact the editorial offices of Morgan Kaufmann Publishers, Inc.

Cataloging-in-Publication Data

Patterson, David A. -
Computer organization and design: the hardware/software interface
/ David A. Patterson, John L. Hennessy.
. cm.

Includes bibliographical references and index.

ISBN 1-55860-281-X

1. Computer organization. 2. Computers--Design and construction.
3. Computer interfaces. 1. Hennessy, John L. II. Title
QA76.9.C643P37 1994
004.2"2--dc20 94-17639

CIP

Computer Organization and Design

THE HARDWARE/SOFTWARE INTERTFACE

TRADEMARKS

The following trademarks are the property of the following organizations:

TeX is a trademark of American Mathematical Society.
Apple Il and Macintosh are trademarks of Apple Computer, Inc.
UNIX and UNIX F77 are trademarks of Novell.

The Cosmic Cube is a trademark of California Institute of Technol-
ogy.
CP3100 is a trademark of Conner Peripherals.

CDC 6600, CDC 7600, CDC STAR-100, CYBER-180, CYBER-
180/990, and CYBER-205 are trademarks of Control Data Corpora-
tion.

CRAY-1, CRAY-1S, CRAY-2, CRAY X-MP, CRAY X-MP/416,
CRAY Y-MP, CFT-77 V3.0, CFT, CFT2 V1.3a, and T3D are trade-
marks of Cray Research.

Alpha, CVAX, DEC, DECsystem, DECstation, DECstation 3100,
DEC system 10/20, fort, LP11, Massbus, MicroVAX-I, MicroVAX-
11, PDP-8, PDP-10, PDP-11, RS-11M/IAS, Unibus, Ultrix, Ultrix 3.0,
VAX, VAXstation, VAXstation 2000, VAXstation 3100, VAX-11,
VAX11/780, VAX-11/785, VAX Model 730, Model 750, Model 780,
VAX 8600, VAX 8700, VAX 8800, VS FORTRAN V2.4, and VMS are
trademarks of Digital Equipment Corporation.

Gnu C Compiler is a trademark of Free Software Foundation.

M2361A, Super Eagle, VP100, and VP200 are trademarks of Fujitsu
Corporation.

Apollo DN 300, Apollo DN 10000, HP Precision Architecture,
HPPA, HP 850, HP 3000, HP 3000/70, HP 9000, and Precision are
trademarks of Hewlett-Packard Company.

432,960 CA, 4004, 8008, 8080, 8086, 8087, 8088, 80186, 80286, 80386,
80486, Delta, iAPX 432, i860, iPSC, iPSC/2, Intel, Intel Hypercube,
Multibus, Multibus II, and Paragon are trademarks of Intel Corpo-
ration.

Inmos and Transputer are trademarks of Inmos.

IBM, 360, 360/30, 360/40, 360/50, 360/65, 360/85, 360/91, 370,
370/135, 370/138, 370/145, 370/155, 370/158, 370/165, 370/168,
370-XA, ESA/370, System/360, System/370, 701, 704, 709, 801,
3033, 3080, 3080 series, 3080 VF, 3081, 3090, 3090/100, 3090/200,
3090/400, 3090/600, 3090/600S, 3090 VF, 3330, 3380, 3380D, 3380
Disk Model AK4, 3380], 3390, 3880-23, 3990, 7030, 7090, 7094, IBM
FORTRAN, ISAM, MVS, IBM PC, IBM PC-AT, PL.8, PowerPC, RT-
PC, SAGE, Stretch, IBM SVS, Vector Facility, and VM are trade-
marks of International Business Machines Corporation.

FutureBus is a trademark of the Institute of Electrical and Electron-
ic Engineers.

Goodyear MPP is a trademark of Goodyear Tire and Rubber Co,
Inc.

ICL DAP is a trademark of International Computers Limited.
KSR-1 is a trademark of Kendall Square Research.

MASPAR MP-1 is a trademark of MasPar Corporation.

NuBus is a trademark of Massachusetts Institute of Technology.

MIPS, MIPS 120, MIPS/120A, M /500, M /1000, RC6230, RC6280,
R2000, R2000A, R2010, R3000, R3010, and R4000 are trademarks of
MIPS Technology, Inc.

Delta Series 8608, System V/88 R32V1, VME bus, 6809, 68000,
68010, 68020, 68030, 68882, 88000, 88000 1.8.4m14, 88100, and 88200
are trademarks of Motorola Corporation.

Ncube and nCube/ten are trademarks of Ncube Corporation.
Parsytec GC is a trademark of Parsytec, Inc.

Wren IV, Imprimis, Sabre, Sabre 97209, and IPI-2 are trademarks of
Seagate Corporation.

Sequent, Balance 800, Balance 21000, and Symmetry are trade-
marks of Sequent Computers.

Silicon Graphics 4D/60, 4D/240, and Silicon Graphics 4D Series
are trademarks of Silicon Graphics.

Connection Machine, CM-2, and CM-5 are trademarks of Thinking
Machines.

Burroughs 6500, B5000, B5500, D-machine, UNIVAC, UNIVAC I,
UNIVAC 1103 are trademarks of UNISYS.

Spice and 4.2 BSD UNIX are trademarks of University of California
at Berkeley.

Alto, Ethernet, PARC, Palo Alto Research Center, Smalltalk, and
Xerox are trademarks of Xerox Corporation.

TO LINDA AND ANDREA

vi

Foreword

by Maurice V. Wilkes
Cambridge, England

This is an excellent time for a new book on computer design. During the last
ten years the subject has undergone a marked renaissance. It has become less
dependent on intuition and personal opinion, and more on measurement and
rational analysis. The subtitle of the author’s earlier book Computer Architec-
ture: A Quantitative Approach makes this point.

Patterson and Hennessy played their part in these developments. Indeed,
widespread public discussion of the new ideas may be said to have begun with
the publication in 1980 of a paper by Patterson and Ditzel entitled “The Case
for the Reduced Instruction Set Computer.” The acronym RISC derives from
this paper. Patterson proceeded to put RISC ideas into practice by developing
the Berkeley RISC with the aid of a group of students. This design became the
basis of the SPARC workstations. Hennessy applied his energies to the MIPS
design project at Stanford and became one of the founders of the MIPS Com-
puter company.

Like many seminal ideas, RISC is deceptively simple. The emphasis is not
on the size of the instruction set, but on its nature; RISC instruction sets have
made it possible to apply, in a single chip processor, subtle techniques for in-
struction level concurrency that were previously to be found only in large
computers.

There is a lot more to computer design than is comprised in the RISC phi-
losophy, as will be shown by a glance at the diagram entitled “The Five Classic
Components of a Computer” which appears, with differing highlighting, at
the head of various chapters of this book. But RISC has been a unifying influ-
ence. Another major unifying influence has been the need to work within the
boundaries of a silicon chip, where there is never enough space and, if one
thing goes in, another must go out. Performance depends critically on deci-
sions taken at the chip level. No longer can system design be a subject di-
vorced from computer implementation, a change which may have left some
people high and dry, but which is nevertheless wholly to the good. Nor can
system design be divorced from consideration of the software interface, a
point which the authors bring out both in their subtitle and in their text.

The computer field, particularly on the software side, abounds with exam-
ples of new ideas that have found their way into industrial practice by being
taught in universities and have thereby become part of the professional tool kit

Foreword vii

which graduating students have carried with them into industry. In hard-
ware, it is often the other way round; teaching follows practice. This is another
reason for welcoming a book by two engineers who can write of current prac-
tice with authority.

As I followed the authors through their unhurried chapters, I was con-
scious of the all-seeing eye of the evaluator pictured at the chapter heads. Ever
watchful, she—I think it is a female eye, but I cannot be sure—seemed to be
saying that every argument has another side, and that every insight gains by
being put into perspective.

I think students will enjoy learning from this book; at least, hope so and I
give them my good wishes.

Preface

The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.

Albert Einstein
What I Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect
the current state of the field, as well as introduce the principles that are shap-
ing computing. We also feel that readers in every specialty of computing need
to appreciate the organizational paradigms that determine the capabilities,
performance, and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing
specialty to understand both hardware and software. The interaction between
hardware and software at a variety of levels also offers a framework for under-
standing the fundamentals of computing. Whether your primary interest is
computer science or electrical engineering, the central ideas in computer orga-
nization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts
that are the basis for current computers.

Traditionally, the competing influences of assembly language, organiza-
tion, and design have encouraged books that consider each area as a distinct
subset. In our view, such distinctions have increasingly lost meaning as com-
puter technology has advanced. To truly understand the breadth of our field,
it is important to understand the interdependencies among these topics.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organiza-
tion, as well as readers with backgrounds in assembly language and/or logic
design who want to learn how to design a computer or understand how a sys-
tem works and why it performs as it does.

Relationship to CA:AQA

Many readers will be familiar with Computer Architecture: A Quantitative
Approach (Morgan Kaufmann, 1990). Our motivation in writing that book was
to describe the principles of computer architecture using solid engineering
fundamentals and quantitative cost/performance tradeoffs. We used an
approach that combined examples and measurements, based on commercial

xXiv

Preface

systems, to create realistic design experiences. Our goal was to demonstrate
that computer architecture could be learned using scientific methodologies
instead of a descriptive approach.

We've discovered that many people have used that book as a first introduc-
tion to the field. We've also learned that many institutions are now using this
quantitative approach in more introductory computer organization courses.
However, Computer Architecture was written at a more advanced level, for
readers who already understood the basic principles.

A majority of the readers for Computer Organization and Design: The Hard-
ware/Software Interface will not be or plan to become computer architects. How-
ever, the performance of future software systems will be dramatically affected
by how well software designers understand the basic hardware techniques at
work in a system. Thus, compiler writers, operating system designers, data-
base programmers, and most other software engineers need a firm grounding
in the principles presented in this book. Similarly, hardware designers must
understand clearly the effects of their work on software applications.

Given these factors, we knew that this book had to be much more than a
subset of the material in Computer Architecture. We've approached every topic
in a new way. Topics shared between the books were written anew for this ef-
fort, while many other topics are presented here for the first time. To further
ensure the uniqueness of Computer Organization and Design, we exchanged the
writing responsibilities we assigned to ourselves for Computer Architecture.
The topics that Hennessy covered in the first book were written by Patterson
in this one, and vice versa. Several of our reviewers suggested that we call this
book “Computer Organization: A Conceptual Approach” to emphasize the
significant differences from our other book. It is our hope that the reader will
find new insights in every section, as well as a more tractable introduction to
the abstractions and principles at work in a modern computer.

Learning by Evolution

It is tempting for authors to present the latest version of a hardware concept
and spend considerable time explaining how these often sophisticated ideas
work. We decided instead to present each idea from its first principles,
emphasizing the simplest version of an idea, how it works, and how it came
to be. We believe that presenting the fundamental concepts first offers greater
insight into why machines look the way they do today, as well as how they
might evolve as technology changes.

To facilitate this approach, we have based the book upon the MIPS proces-
sor. It offers an easy to understand instruction set and can be implemented in
a simple, straightforward manner. This allows readers to grasp an entire ma-
chine organization and to follow exactly how the machine implements its in-
structions. Throughout the text, we present the concepts before the details,
building from simpler versions of ideas to more complex ones. Examples of
this approach can be found in almost every chapter. Chapter 3 builds up to
MIPS assembly language starting with one simple instruction type. The con-

Preface xv

cepts and algorithms used in modern computer arithmetic are built up starting
from the familiar grammar school algorithms in Chapter 4. Chapters 5 and 6
start from the simplest possible implementation of a MIPS subset and build to
a fully pipelined version. Chapter 7 illustrates the abstractions and concepts in
memory hierarchies by starting with the simplest possible cache and introduc-
ing virtual memory and TLBs as an extension of the concepts.

This evolutionary process is used extensively in Chapters 5 and 6, where
the complete datapath and control for a processor are presented. Since learn-
ing is a visual process, we have included sequences of figures that contain pro-
gressively more detail or show a sequence of events within the machine. We
have also used a second color to help readers follow the figures and sequences
of figures.

Learning from this Book

Our objective of demonstrating first principles through the interrelationship
of hardware and software is enhanced by several features found in each chap-
ter. The Hardware/Software Interface sections are used to highlight these
relationships. We've also included Big Picture sections for each chapter to
remind readers of the major insights. We hope that these elements reinforce
our goal of making this book equally valuable as a foundation for further
study in both hardware and software courses.

To illustrate the relationship between high-level language and machine
language and to describe the hardware algorithms, we have chosen C. It is
widely used in compiler and operating system courses, it is widely used by
computer professionals, and several facilities in the language make it suitable
for describing hardware algorithms. For those who are familiar with Pascal
rather than C, Appendix D provides a quick introduction to C for Pascal pro-
grammers and should be sufficient to understand the code sequences in the
text.

We have tried to manage the pace of the presentation for readers of varying
experience. Ideas that are not essential to a newcomer, but which may be of in-
terest to the more advanced reader, are presented as Elaborations. When ap-
propriate, advanced concepts have been saved for the exercise sets and
enhanced with additional discussion as In More Depth sections. In addition,
we found that the extent of background that students have in logic design var-
ies widely. Thus, Appendix B provides all the necessary background for those
readers not versed in the basics of logic design, as well as some slightly more
sophisticated material for the more advanced student. Within a course, this
material can be used in supplementary lectures or incorporated into the main-
stream of the course, depending on the background of the students and the
goals of the instructor.

We have also found that readers enjoy learning the history of the field, so
the Historical Perspective sections include many photographs of important
machines and little known stories about the ideas behind them. We hope that
the perspective offered by these anecdotes and photographs will add a new di-
mension for our readers.

Preface

Course Syllabi and this Book

One particularly difficult issue facing instructors is the balance of assembly
language programming with computer organization. We have written this
book so that readers will learn more about organization and design, while
still providing a complete introduction to assembly language. By using a
RISC architecture, students can learn the basics of an instruction set and
assembly language programming in less time than is typically reserved in the
curriculum for CISC based assembly courses. Many instructors have also
found that using a simulator, rather than running in native mode on a real
machine, provides the experience of assembly language programming in sub-
stantially less time (and with less pain for the student).

Instructors may contact the publisher regarding the SPIM simulator of the
MIPS processor. The XSPIM simulator developed by James R. Larus is retriev-
able via ftp (see page xxiii). Adaptations are also available in Windows and
Macintosh formats. Although not identical, they offer the same general func-
tionality. We feel this will enhance student opportunities for learning about
computer organization (see Appendix A). Finally, stepwise derivation of as-
sembly from a high-level language takes less study time than learning it from
the ground up. Chapter 3 and Appendix A may be used together or separately,
depending upon the reader’s background. Chapter 3 provides the basics and
can be supplemented with additional detail from Appendix A for a complete
introduction to modern assembly language programming, including assem-
blers, linkers, and loaders. In the end, we hope this approach offers a more ef-
ficient treatment of assembly for most readers, while being sufficiently broad
to support detailed lecture or laboratory coverage if an instructor wants more
emphasis on assembly language programming.

For those courses intended to expose students to the important principles
of computer organization, the chapters from 4 to 9 explain the key ideas.
Chapter 4 explains the idea of number representation for both integers and
floating-point numbers and shows how arithmetic algorithms work. Chapters
5 and 6 introduce key ideas in control and pipelining and can be covered at
several levels. Chapter 7 introduces the principles of memory hierarchies, uni-
fying the ideas of caching and virtual memory. Chapter 8 shows how I/O sys-
tems are organized and controlled, explaining the cooperative relationship
between the hardware and the operating system. Finally, Chapter 9 uses ex-
amples to introduce the key principles used in multiprocessors.

For readers who want a greater emphasis on computer design, Chapters 4
through 6, together with Appendices B and C, provide that opportunity. For
example, Chapter 4 explains a number of techniques used by computer de-
signers to speed up addition and multiplication. Chapters 5 and 6 derive com-
plete implementations of a MIPS subset using the arithmetic elements from
Chapter 4 and a number of common datapath elements (such as register files
and memories) that are explained in detail in Appendix B. Chapter 5 starts
with a very simple implementation; a complete datapath and control unit are
constructed for this organization. The implementation is then modified to de-
rive a faster version where each instruction can take differing numbers of clock

Preface xvii

cycles. The control for this multicycle implementation is designed using two
different methods in Chapter 5. Appendix C shows in detail how the control
specifications are implemented using structured logic blocks. Chapter 6 builds
on the single-clock cycle implementation created in Chapter 5 to show how
pipelined machines are designed. The design is extended to show how haz-
ards can be handled and how control for interrupts works. The student inter-
ested in computer design, is not only exposed to three different designs for the
same instruction set, but can also see how these designs compare in terms of
advantages and disadvantages.

Chapter Organization and Overview

Using these plans as the core, we developed the other chapters to introduce
and support that core.

Many students remarked that they appreciated learning about the continu-
ing rapid change in speed and capacity of hardware, as well as some of the his-
tory of computer development. This material is the focus of Chapter L. It
provides a perspective on how software or hardware will need to scale during
the coming decades. Chapter 1 also introduces topics to be covered in later
chapters.

Chapter 2 shows that time is the only safe measure of computer perfor-
mance. It also relates common measurements used by hardware and software
designers to the reliable measurement of time. The material in this chapter mo-
tivates the techniques discussed in Chapters 5, 6, and 7 and provides a frame-
work for evaluating them.

Chapter 3 builds on the knowledge of a programming language to derive
an assembly language, offering several rules of thumb that guide the designer
of the assembly language. We chose the instruction set of a real computer, in
this case MIPS, so that real compilers could be used by students to see the code
that would be generated. We hide the delayed branch and load until Chapter
6 for pedagogical reasons. Fortunately, the MIPS assembler schedules both de-
layed branches and loads so the assembly language programmer can ignore
these complexities without danger. Readers interested in seeing a very differ-
ent approach to instruction set design should read Appendix E, which gives a
short introduction to the VAX architecture using the same major program-
ming example as in Chapter 3.

Although there is no consensus on what should be covered or what should
be skipped in learning about computer arithmetic, we couldn't write Chapter
4 without reaching some conclusions of our own! We understand that the top-
ics and depth of coverage vary greatly from one course to another, sometimes
within the same department, depending upon the taste and background of the
individual instructor. For example, some instructors feel it's essential that
everyone learn multibit Booth algorithms, while others will skip signed mul-
tiplication. Our solution is to introduce all the central ideas in the chapter and
to provide additional background for more advanced topics in the exercises.
This allows one instructor to cover more advanced topics and assign exercises
based on them, while another instructor may skip the material.

xviii

Preface

Chapters 5 and 6 show a realistic example of a processor in detail. Most
readers appreciate having a real example to study, and a complete example
provides the insight needed to see how all the pieces of a processor fit together
for a pipelined and nonpipelined machine. To facilitate skipping some details
on hardware implementation of control, we have included much of this mate-
rial in Appendix C.

Just as Chapters 2 through 6 provide important background for readers
with an interest in compilers, Chapters 7 and 8 provide vital background to
anyone pursuing further work in operating systems or databases. Chapter 7
describes the principles of memory hierarchies, focusing on the commonality
between virtual memory and caching. Chapter 7 emphasizes the role of the
operating system and its interaction with the memory system.

Topics as diverse as operating systems, databases, graphics, and network-
ing require an understanding of I/O systems organization as well as the major
technical characteristics of devices that influence this organization. Chapter 8
focuses on the topic of how I/O systems are organized starting with bus orga-
nizations, working up to communication between the processor and I/O de-
vice, and finally to the management role of the operating system. While we
emphasize the interfacing issues, especially between hardware and software,
several other important topics are introduced. Many of these topics are useful
not only in computer organization but as background in other areas. For ex-
ample, the handshaking protocol, used to interface asynchronous I/O devices,
has applications in any distributed system.

For some readers, this book may be their only overview of computer sys-
tems, so we have included a survey of parallel processing. Rather than the tra-
ditional catalog of characteristics for many parallel machines, we have tried to
describe the underlying principles that will drive the designs of parallel pro-
cessors for the next decade. This section includes a small running example to
show different versions of the same program for different parallel architec-
tures.

Because the book is intended as an introduction for readers with a variety
of interests, we tried to keep the presentation flexible. The appendices on as-
sembly language and logic design are one of the principle vehicles to allow
such flexibility, as these are easily skipped by more advanced readers. The
presence of the appendices has made it possible to use this book in a course
that mixes EE and CS majors with fairly different backgrounds in logic design
and software.

Assembly language programming is best learned by doing and in many
cases will be done with the use of the simulator available with this book. Be-
cause of this, we invited Jim Larus, the creator of the SPIM simulator, to join
us as a contributor of Appendix A. Appendix A describes the SPIM simulator
and provides further details of the MIPS assembly language. In addition, it de-
scribes assemblers and linkers, which handle the translation of assembly lan-
guage programs to executable machine language.

The logic design appendix is intended as a supplement to the material on
computer organization rather than a comprehensive introduction to logic de-
sign. While many EE students in a computer organization course will have al-

Preface Xix

EE/CS soph/jr CS jr/sr CS soph/jr

ready had a course on logic design or digital electronics, we have found that
CS majors in many institutions have not had much exposure to this area. The
first few sections of Appendix B provide the necessary background. We in-
clude some material, such as the organization of memories and finite state ma-
chine control of a processor, in the mainstream material, since it is crucial to
understanding computer organization.

Selection of Material

If you had no prior background and wanted to read from cover-to-cover, the
following order makes sense: Chapters 1 and 2, Appendix D (if needed),
Chapter 3, Appendices A and E, Chapter 4, Appendix B, Chapter 5, Appendix
C, Chapters 6, 7, 8, and 9. Clearly, most readers skip material. We have
worked to provide readers with flexibility in their approach to the material,
without making the discussions redundant. The chapters have been written
as self-contained units with cross-references to other chapters when related
text or figures should be considered. The book has been used successfully in a
variety of Beta courses with different goals and student backgrounds. Specific
choice of materials as well as the sequence of presentation varied significantly
among the Beta sites. Table 1 samples some of these differences.

EE sr/gr

EE/CS jr/sr

EE/CS jr/sr

Prerequisites HLL Assembly Assembly Assembly Assembly Assembly
HLL Some logic Digital fund. Digital design

Term (in weeks) 10 14 15 10 16 10

1 Introduction 1 — 2 1 Reference 1

2 Performance 2 — 3 2 Reference 2

3 Instructions 3(p) 4 (p) 4 3 1 3(p)

4 Arithmetic 4 2 6 4 2/6 4

5 Processor 5 3 7 5 (p) 3/5 5

6 Pipelining 6 5 8 (p) 6 6

7 Memory 7 6 9 7 7

81/0 8 7 10 8 9 8 (p)

9 Parallel 8 11 9 (p)

A Assembly 3 Reference

B Logic Reference 1 5

C Control Reference 4

Other topics VAX (App E) 1 C language RISC machines

Table 1 (p) = partial coverage or cursory. Numbers refer to the sequence of chapter coverage. Numbers separated by /
indicates chapter was covered in parts out of sequence.

Preface

Concluding Remarks

In our last book we alternated the gender of a pronoun chapter by chapter. In
this book we believe we have removed all such pronouns, except of course for
specific people.

If you read the following acknowledgement section, you will see that we
went to great lengths to correct mistakes. Since a book goes through many
printings, we have the opportunity to make even more corrections. If you un-
cover any remaining, resilient bugs, please contact the publisher by electronic
mail at errors@cs.berkeley.edu or by low-tech mail using the address found on
the copyright page. The first person to report a technical error will be awarded
a $1.00 bounty upon its implementation in future printings of the book!

Finally, like the last book there is no strict ordering of the authors’ names.
About half the time you will see Hennessy and Patterson, both in this book and
in advertisements, and half the time you will see Patterson and Hennessy.
You'll even find it listed both ways in bibliographic publications such as Books
In Print. This again reflects the true collaborative nature of this book: Together
we brainstormed about the ideas and method of presentation, then individu-
ally wrote about one-half of the chapters and acted as reviewer for every draft
of the other. The page count suggests we again wrote almost exactly the same
number of pages. Thus, we equally share the blame for what you are about to
read.

Acknowledgements

We wish first to acknowledge the encouragement and suggestions offered by
the readers of Computer Architecture: A Quantitative Approach and the review-
ers of the proposal originally produced for this book. We would not have
written this book without their support and directions.

Before we started this book, we received valuable comments on an outline
of our ideas from

Alan Berenbaum, AT&T; Douglas W. Clark, Digital Equipment Corpora-
tion/Princeton University; David Culler, University of California at Berke-
ley; Stephen J. Hartley, University of Texas at San Antonio; Monica Lam,
Stanford; Daniel McCrackin, McMaster University; William R. Michalson,
Worcester Polytechnic Institute; Yuval Tamir, University of California at
Los Angeles; Philip A. Wilsey, University of Cincinnati

The early comments from these reviewers convinced us that there was a need
for a book with the goals we have used for this effort.

We’d like to express our appreciation to Jim Larus for his willingness in
contributing his expertise on assembly language programming, as well as for
welcoming readers of this book to use the simulator he developed and main-
tains at the University of Wisconsin.

Thanks go to about 50 students at Berkeley taking CS 152 during Spring se-
mester 1992 and about 80 students at Stanford taking CS 182 during Winter
Quarter 1992 for debugging the alpha version of the text. Professors John

Preface xxi

Wawrzynek and John Hennessy taught the two courses. Jeff Kuskin, who
served as the teaching assistant at Stanford, provided valuable advice and gen-
erated the original versions of a number of exercises that appear in this book.

In addition to the student comments, we appreciate the feedback from
these reviewers of the alpha version:

Alan Berenbaum, AT&T; Douglas W. Clark, Digital Equipment Corpora-
tion/Princeton University; Rajan Chandra, California State Polytechnic
University at Pomona; Edward W. Czeck, Northeastern University; Chris
Edmondson, Yurkanan University of Texas at Austin; Robert Fowler, Uni-
versity of Rochester; Gideon Frieder, George Washington University
(Chapter 1); Mark Hill, University of Wisconsin at Madison; Kai Li, Princ-
eton University; Bart Locanthi, AT&T (Chapter 8); David Meyer, Purdue
University; William R. Michalson, Worcester Polytechnic Institute; Mark
Smotherman, Clemson University ; Evan Tick, University of Oregon (care-
ful review of figures); Shlomo Weiss, Tel Aviv University (Chapter 8); Alan
Zaring, Ohio Wesleyan University (Chapter 9 and Appendix B)

Mark Smotherman’s comments on the role of assembly language were espe-
cially helpful in deciding how to deal with this topic. Many of the reviewers
provided helpful suggestions for exercises. William Kahn of UC Berkeley
provided the material for the history section for the computer arithmetic
chapter.

The Beta reviewers included:

David Douglas, Thinking Machines (Chapter 9); Alan Fekete, University of
Sydney; Corinna Lee, University of Toronto; William R. Michalson
Worcester Polytechnic Institute; Ned Okie, Radford University; Klaus Erik
Schauser, University of California at Berkeley; Guri Sohi, University of
Wisconsin at Madison (Chapter 9); Arun Somani, University of Washing-
ton; Philp Tromovitch, SUNY at Stony Brook; David Ward, Brigham
Young University; James Van Orman, Brigham Young University (who
provided extensive figure review both in the Beta and for the final edition)

Special thanks go to Doug Clark for his inputs on both the Alpha and Beta
versions. As with Computer Architecture, Doug provided a wealth of comments
to us. His insights, as well as his persistence in urging us to simplify and im-
prove the pedagogy, are deeply appreciated.

The Beta Edition was released for class testing in the Fall of 1992 by the fol-
lowing instructors and institutions:

Rajendra Boppana, University of Texas at San Antonio; Barry S. Fagin,
Dartmouth; Michael Faiman, Univ. of Illinois, Urbana—-Champaign; Mark
A. Friedman, Trinity College; Anoop Gupta, Stanford University; Brian
Harvey, University of California at Berkeley; Roy Jenevein, University of
Texas at Austin; Corinna Lee, University of Toronto; Ned Okie, Radford
University; Parameswaran Ramanathan, University of Wisconsin at
Madison; Arun K. Somani, University of Washington; David M. Ward,
Brigham Young University; John Wawrzynek, University of California at
Berkeley

