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Preface

Spin glasses are a fascinating new topic in condensed matter physics which
developed essentially after the middle of the 1970’s. The aim of this book
is to give an introduction to it which will both attract the newcomer to
the field (say, a student with a basic knowledge of solid state physics and
statistical mechanics) and give a comprehensive survey to the expert who
perhaps has worked on a very specific problem. It is a field which is still
open to new ideas and concepts and in which important new experiments
can certainly still be done.

Our understanding of spin glasses is based on three approaches: theory,
experiment, and computer simulation. We have tried to present the most
important developments in all of them. One possibility is to take the theory
as a guide and to check it by comparison with experimental data and simu-
lations. This is roughly what we do in the first part of this book (Chapters
3 to 6), after introducing the basic experiments, models and concepts which
define what we are talking about. (Spin glasses are disordered systems, so
we have to introduce several concepts which are unknown in the ‘classical’
theory of ideal solids.)

In Chapters 3 to 6 we discuss a mean field theory, which is so far the
only well-established spin glass theory. It turns out to be highly nontrivial
and has been developed over more than a decade. Its underlying ideas
have also proved to be fruitful in optimization problems and the theory of
neural networks. This led us to include a brief account of these subjects in
Chapter 14 (entitled ‘the physics of complexity’).

However, the mean field theory gives only a hint about what happens
in real spin glasses, and in Chapters 7 to 11 we rely more and more on
experiment and computer simulation. Here the concepts of scaling and
renormalization permit us considerable insight into the spin glass phase
and the transition between it and the paramagnetic phase, and the idea of
‘frustration’ gives at least a feeling of the fundamental difference between
ideal periodic solids and disordered ones.

This book is not a review. In the early and mid-1980’s more than 400
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papers per year were written on spin glasses (altogether more than 4000),
and it would be completely hopeless to discuss or even mention them all.
Rather, we have tried to present the most important ideas and developments
in the field. Naturally, this is a very personal selection, and we want to
apologize to the thousands of authors whose interesting papers we could
not mention. Some of these papers have been discussed in the excellent
review of Binder and Young (1986), in the somewhat older reviews by one
of us (Fischer, 1983c, 1985), in the Heidelberg Colloquia on spin glasses
and on glassy dynamics (van Hemmen and Morgenstern, 1983, 1986), and
in the books by Chowdhury (1986) and Mézard et al (1987).

Our understanding of spin glasses has grown over many years, and it is a
pleasure for us to thank the large number of our colleagues who contributed
to it. We especially want to thank Philip Anderson, Alan Bray, Cyrano De
Dominicis, Anil Khurana, Wolfgang Kinzel, Richard Klemm, Hans Maletta,
Mike Moore, Richard Palmer, Hans-Jiirgen Sommers, Peter Young, and
Annette Zippelius.

We are also very grateful to Mrs Ch. Hake, who typed a large part of
this book in TEX.
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1

Introduction

Questo é quel pezzo di calamita:
Pietra mesmerica, ch’ebbe l’origine nell’Alemagna,
Che poi si celebre 1a in Francia fu.!

Lorenzo da Ponte, Cosi fan Tutte, Act T

One of the dominant themes in the history of physics in this century has
been the effort to understand condensed states of matter. This began with
very simple systems — the Van der Waals description of the liquid—-gas
transition and the Weiss mean field theory of ferromagnetism — and has
gradually developed to include more and more complex and subtle states
and phenomena. Spin glasses are the current frontier in this development,
the most complex kind of condensed state encountered so far in solid state
physics.

In trying to understand these systems, experimentalists have used a
wide spectrum of probes in ingenious ways, and theorists have invented an
equally wide variety of models and new theoretical concepts. The resulting
developments have had an impact, not only on other parts of physics, but
also on other fields such as computer science, mathematics, and biology. It
is because of this widespread influence and the interest in spin glasses that
it has aroused that we are writing this book.

We expect that many people who read this book will be condensed mat-

1 This is a magnet: the mesmerizing stone discovered in Germany and then so
famous in France.
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ter physicists. However, we also have in mind as a typical reader someone
from another area in physics, or perhaps a graduate student looking for a
research topic, who wants to find out what all the excitement is about. She
need not be a condensed matter physicist, or even a physicist at all, though
we do assume a reasonable knowledge of basic statistical mechanics. With
her in mind, we begin with some basic questions.

First: What is a spin glass? The simplest answer (which we will nat-
urally have to improve on in the course of succeeding paragraphs and
chapters) is that it is a collection of spins (i.e. magnetic moments) whose
low-temperature state is a frozen disordered one, rather than the kind of
uniform or periodic pattern we are accustomed to finding in conventional
magnets. It appears that in order to produce such a state, two ingredients
are necessary: There must be competition among the different interactions
between the moments, in the sense that no single configuration of the spins
is uniquely favoured by all the interactions (this is commonly called ‘frus-
tration’), and these interactions must be at least partially random. These
facts suggest that the spin glass state is intrinsically different from conven-
tional forms of order and requires new formal concepts to describe it. This
challenge has been the fundamental motivation for theorists in this field.

Experimentally, it does not seem to be hard to find spin glasses. Quite
the contrary, spin glass behaviour has been seen in virtually every kind of
system which people have been able to make that satisfies these require-
ments.

The first kind of system to be studied widely consisted of dilute solutions
of magnetic transition metal impurities in noble metal hosts. The impurity
moments produce a magnetic polarization of the host metal conduction
electrons around them which is positive at some distances and negative at
others. Other impurity moments then feel the local magnetic field produced
by the polarized conduction electrons and try to align themselves along it.
Because of the random placement of the impurities, some of interactions
are positive (i.e. favouring parallel alignment of the moments) and some
are negative. Thus we clearly have random, competing interactions.

At one time, many people believed that spin glass behaviour was sensi-
tively dependent on particular features of this special class of systems. But
we now know that this is not so. Spin glass states have also been found
in magnetic insulators and in amorphous alloys, where the dependence of
the interactions on the distance between the moments is entirely different
from that in the above crystalline metallic systems. The ‘spin’ degrees of
freedom need not even be magnetic. Properties analogous to those of spin
glasses, with the electric dipole moment taking the place of the magnetic
one, have been seen in ferroelectric-antiferroelectric mixtures, and a kind
of orientational freezing has been observed in disordered molecular crystals
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in which the electric quadrupole moment plays the role of the spin. This
universal nature of the observed phenomena is another reason for thinking
this is an important problem to study. The next fundamental question we
ask is how we observe such a state.

The description ‘frozen disorder’ suggests that we are dealing with a
state where the local spontaneous magnetization m; = (S;) at a given site 4
is nonzero, though the average magnetization M = N~!' 5" m;, as well as
any ‘staggered’ magnetization My = N~! N e‘iK'rimi, vanishes. That
the low-temperature state was not an antiferromagnet was indicated by
neutron scattering experiments, which showed no magnetic Bragg peaks
which would have indicated long range order. (Here and henceforth (S;)
means the conventional thermal average, and the magnetization is in units
of —gup. )

The local spontaneous magnetizations make their presence felt in an
experiment because they reduce the susceptibility from the value it oth-
erwise would have. This effect is in fact familiar from antiferromagnets,
where a sharp reduction in the susceptibility from its extrapolated high-
temperature form signals the onset of antiferromagnetic order. The same
thing happens in spin glasses, and Fig. 1.1 shows examples of some sus-
ceptibility measurements that played a key role in arousing the interest in
this field that exploded in the mid-1970’s. They exhibit a marked cusp at
a temperature which is rather sharply defined, suggesting a second-order
phase transition between the disordered paramagnetic state and a spin glass
state characterized by nonvanishing local spontaneous magnetizations m;.
The difference between the measured susceptibility and the extrapolation
of the high-temperature form should be some measure of the degree of
freezing. Immediately, people wanted to know in what ways this transition
(if, indeed, it was a sharp transition) was like ordinary second-order phase
transitions and in what ways it might be different.

The connection between the susceptibility and the existence of frozen
moments can be made more explicit by supposing we have a system of Ising
spins (S; = £1) and considering the single-site susceptibility x;; defined
as the amount of magnetization m; induced at site ¢ by an external field
B; = —h;/gup acting only on this site:

_ Bml

T

A fundamental theorem of classical statistical mechanics (see, e.g. Landau

and Lifshitz, 1969) relates the equilibrium fluctuations of any thermody-

namic variable to the mean amount of this variable induced by a conjugate

field. The present case affords the simplest possible example of this relation.
It says (in units where the Boltzmann constant kg = 1)

(1.1)
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Figure 1.1: The ac susceptibility of Cu-0.1% Mn (x), Ag-0.5% Mn (e),
Au-0.5% Mn (+), Au-0.2% Cr (A), and Ag-1.0% Mn (O) versus temper-
ature for a magnetic field H = 20 Oe and 100 Hz (from Cannella and
Mydosh, 1972, 1974).

Txii = {(Si — (8:)%) =1 —m? (1.2)
where the last step uses explicitly the fact that S? = 1. Averaging over all
the sites in the system gives

1 1—N_1Z.m‘2
kv = —= 1.
Xt N% X T (1.3)

That is, the reduction of the average local susceptibility x;o. from the Curie
law characteristic of free moments is a direct measure of the mean square
local spontaneous magnetization in the frozen state. Although the exper-
iments of Fig. 1.1 do not measure the local susceptibility, but rather the
so-called uniform susceptibility (which we denote by x without any sub-
script)

om;
N ZX” - N o, (1-4)
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Figure 1.2: The ac susceptibility as a function of temperature for Cu-0.9%
Mn for the frequencies 1.33 kHz (O), 234 Hz (o), 10.4 Hz (x), and 2.6 Hz
(&) (from Mulder et al, 1981, 1982).

it can be shown (Fischer, 1976) that the off-diagonal elements of Xi; vanish
(in zero field) if the interactions between different spins are symmetrically
distributed. More generally, the uniform y will have a cusp if xjoc does,
so the experiments really do indicate the existence of a nonzero frozen
spontaneous magnetization — a spin glass state.

The freezing temperature T, defined by the cusp in the ac susceptibility
as seen in Fig. 1.1, actually turns out to depend on the frequency of the
applied magnetic field. The ‘true’ Ty should therefore be defined by the
limit of vanishing frequency. Furthermore,the cusp is not completely sharp,
as shown in Fig. 1.2 for CuMn (which is one of the best investigated spin
glass systems). In this more precise experiment one has to distinguish
between the in-phase or real part x’(w, T') and the out of phase or imaginary
part x”(w,T) of the complex susceptibility x(w,T) = x'(w,T) +ix"(w, T).

There is a crude phenomenology for describing these slow dynamics
(Lundgren et al, 1981; van Duyneveldt and Mulder, 1982) for frequencies
in the range shown in Fig. 1.2. Below Tf(w), the real part of x(w) varies
approximately logarithmically with frequency:

X' (w) =x0+aln (ﬁ) (1.5)

Then the Kramers-Kronig relations imply a roughly frequency-independent
.

X
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"

X' = %sgnw (1.6)

which is independently measurable (see Fig. 1.3).

The logarithmic dependence is not exact, just a rather good fit, and
other functional forms such as a power law with a small exponent work as
well. For much lower frequencies (i.e. times sufficiently longer than those
characteristic of these experiments) the frequency dependence of Y’ seems
to disappear, indicating that a true equilibrium limit x(0) has been reached.
For much higher frequencies, the simple approximate frequency dependence
of (1.5)~(1.6) breaks down, but the qualitative feature of frequency depen-
dence extending over many orders of magnitude in frequency, from micro-
scopic characteristic frequencies to the inverse of the longest experimental
measuring times, has been found in a wide variety of experiments and in es-
sentially all spin glass systems. This universal feature sets spin glasses apart
from conventional magnets, where no significant frequency dependence is
observed for frequencies much lower than the characteristic microscopic
frequencies of the system.

The presence of this ‘glassy’ behaviour with such long characteristic
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Figure 1.4: The static susceptibility of CuMn vs temperature for 1.08 and
2.02% Mn. After zero-field cooling (H < 0.05 Oe), initial susceptibilities
(b) and (d) were taken for increasing temperature in a field of H = 5.90
Oe. The susceptibilities (a) and (c) were obtained in the field H = 5.90
Oe, which was applied above T before cooling the samples (from Nagata
et al, 1979).

times suggests the possible presence of many metastable spin configurations
with a distribution of energy barriers separating them. (Assuming that the
typical time to cross a barrier depends exponentially on its height AFE
(7 oc exp(BAE)), we do not require too broad a distribution of barrier
heights in order to get a very wide relaxation time distribution at low
temperatures.)

Another important feature of all spin glasses is the onset of remanence
effects below T. This is illustrated in Fig. 1.4 for the dc susceptibility
of CuMn as measured in extremely small fields (0.05 Oe < H < 5.9 Oe).
Even in these small fields x4, for T < Ty depends strongly on the way
the experiment is performed: x4.(T') is largest (and roughly temperature-
independent) after ‘field-cooling’, i.e. if the field is applied above Ty and
the sample subsequently cooled in this field to a temperature below Ty.
This measurement is, to a very good approximation, reversible; that is, one
can go up and down in temperature and measure the same magnetization,
independent of history. This is in contrast to the ‘zero-field-cooled’ sus-
ceptibility x,s., obtained by cooling the sample below Ty in zero field and
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then applying the field. After applying a field at a temperature below T,
the magnetization jumps to a finite value, followed by a slow additional
increase. This ‘irreversible’ contribution to x.s. decays only very slowly if
the field is suddenly switched off.

The difference between x,. (Figs. 1.1 and 1.2) and x4. and the rema-
nence effects in x4 have the same origin as the frequency dependence of .
discussed above: the glass-like nature of the system below Ty. There are
many roughly equivalant spin configurations, and the state which is reached
depends crucially on details of the experiment such as the frequency and
magnitude of the applied field, the speed with which one cools down, and
whether one cools in zero or finite field.

There is also a difference at higher fields between the zero-field-cooled
remanent magnetization, in which the field is applied at the measuring tem-
perature and then switched off again (‘isothermal’ remanent magnetization
(IRM)), and the ‘thermoremanent’ magnetization (TRM), that is, the mag-
netization remaining when the field is switched off after field-cooling. Fig.
1.5 shows the field dependence of these remanent magnetizations in AuFe.
Again, both of them are time-dependent: Fig. 1.6a shows the decay of the
IRM plotted against Int, which suggests a decay law

Mg(t) = My — Sgup Int (1.7)

This is in contrast to EuSrS (which again is a ‘standard’ spin glass), in
which the power law

Mg(t) oc t~o(TH) (1.8)

indicated in Fig. 1.6b is found. Finally, one can also fit data by an expo-
nential function of a power law:

Mg(t) « exp[«—(t/r)ﬂ] (1.9)

as indicated in Fig. 1.6c for AgMn, the exponent 3 being about 1/3 for T
not too close to Ty. Any of these very slow decay laws is consistent with
our qualitative ideas about the glassiness of the spin glass state, with many
possible configurations separated by barriers of varying heights. However,
this variety of fits in different systems (if it is meaningful) suggests that
perhaps not all spin glass properties are universal and that the glass-like
structure might vary in its details from system to system.

A similar non-universal property is the hysteresis of the magnetization.
An example (CuMn) is shown in Fig. 1.7. As in ferromagnets, hysteresis
effects are due to anisotropy, which might be extremely different in the
various spin glass systems. The origin of this anisotropy will be discussed
in Section 6.3.



