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PREFACE

The IMACS International Symposium on Iterative Methods in Linear Algebra, organized
jointly by the International Association for Mathematics and Computers in Simulation (IMACS)
and by the Free Universities of Brussels (ULB! and VUB?), took place in the Aula of the VUB
from April 2 to April 4, 1991. It gathered more than 100 participants from more than 25
countries. Among them we could welcome a significant delegation from eastern Europe.

The purpose of the symposium was to provide a forum for the presentation and the discussion
of recent advances in the analysis and implementation of iterative methods for solving large
linear systems of equations and for computing eigenvalues, eigenvectors or singular values of
large matrices. The contributions covered a broad range of subjects. The spectrum varied from
detailed analyses of the multiple facets of the conjugate gradient method and of its various
extensions, to new insights, novel applications and more speculative areas on one side, and to
the technical aspects of parallel and vector implementations and of software development on the
other. !

There were seven invited plenary lectures. A. van der Sluis opened the symposium with
a deep analysis of the convergence behaviour of conjugate gradients and Ritz values. O. Ax-
elsson followed, disclosing the algorithms, devised with P. Vassilevski, for the construction of
variable step preconditioners. Later in the first day afternoon, A. Yeremin explained how to
construct sparse approximate inverse preconditioners for solving the 3D Navier-Stokes equations
by GMRES on massively parallel computers.

H. van der Vorst opened the second day meeting with a wide overview of conjugate gradient
type methods for nonsymmetric systems. In that afternoon, D. Kincaid reported on his joint
work with D. Young on stationary second degree methods. By the end of the second day, S. Doi
excited the audience by a video animation of the unexpected behaviour of the error evolution
in the various schemes, presented in the morning session.

The third day meeting was 'opened by E. Wachspress (who incidentally confessed that he
had been very much interested in SOR when he was ... young) with a status report on consistent
sparse factorization, jointly developed with W. Noronha. F. Chatelin had the perilous job of
closing the conference, which she did by presenting the elements of a new condition theory for
the analysis of numerical algorithms. Thanks to her, nobody left before the very last minute.

* Among the submitted contributions about 70 have been accepted for presentation at the
symposium. From the variety of their titles, as displayed in the Table of Contents, one may infer
the broadness of the sub Jects covered. Nevertheless, the dominant themes are the development
of parallel and vector algorithms, the methods devised for solving unsymmetric problems and
the PCG solution of symmetric problems. Most of these contributions are fully documented
in these proceedings. A few ones are absent or reduced to summaries because of time delays,

! Université Libre de Bruxelles, 50 Av. F.D. Roosevelt, B - 1050 Bruxelles.
> Vrije Universiteit Brussel, Pleinlaan 2, B - 1050 Brussel.
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Vi ITERATIVE METHODS IN LINEAR ALGEBRA

publication elsewhere and other constraints, or did not survive the refereeing. In particular, the
important contribution of J. Halton on the Monte Carlo solution of linear systems, for which
we reserved the whole session 15, could not be included here, due to lack of time and space. In
this session, J. Halton presented a condensed version of a monograph in preparation which is
awaiting completion and publication in the near future. Requests for preliminary copies may be
addressed to the author®.

Contributed papers have been both solicited and refereed by the members of the Interna-
tional Program Committee listed on page vii and we heartily thank them for the hard job they
did. Special thanks are addressed here to O. Axelsson, M. Deville, M. Eiermann, D. Kincaid,
G. Latouche, E. Mund, W. Niethammer, H. van der Vorst, E. Wachspress and Ch. Wu, who
spent lots of time to organize special sessions. However, the International Program Committee
alone would not have been able' to do all the reviewing work. More than 100 contributions
have been submitted, each of which had to be reviewed by two referees. We called the help of
many other referees and it is our pleasure to acknowledge here their kind and quick anonymous
assistance. ‘ ;

All contributions submitted for these proceedings had to be composed under WTgX format.
We thank the authors for their compliance to this requirement, which enabled us to produce at
the meeting a first version of the proceedings, containing most papers, namely all those prepared
ir the required (SIAM-) style. We are greatly indebted in this respect to the technical assistance
of Dr. J.-C. Dehaes who so kindly put his deep knowledge of WTRX to our service and of Mrs
J. Immers who reformatted a great number of papers.

Last but not least, symposia can hardly be organized without financial help and we heartlly
thank here the Belgian “Fonds National de la Recherche Scientifique / Nationaal Fonds voor
Wetenschappelijk Onderzoek”, “PExécutif de la Communauté Frangaise de Belgique”, IBM Bel-
gium and Honeywell Europe S.A. for their assistance. Finally we thank the VUB for putting to
our disposition their lecture hall and its technical staff, and we thank Linda Dasseville for her
accurate secretarial work.

Pieter de Groen October 1991 S Robert Beauwens

® Department of Computer Science, The University of North Carolina, Chapel Hill, NC 27599-3175, USA.
Email: halton@cs.unc.edun
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INVITED LECTURES

CONSTRUCTION OF VAIRIABLE-STEP PRECONDITIONERS FOR
i INNER-OUTER ITERATION METHODS

0. AXELSSON® AND P.S. VASSILEVSKI'

Abstract. The generalized conjugate gradient, GCG-method as proposed by the first author was recently ap-
plied by the present authors for the case of variable-step preconditioner, i.e. in general a nonlinear preconditioning
mapping and its convergence was analyzed.

In a number of practical applications there arise naturally linear algebraic problems with matrices A partitioned
in a two-by-two block form A = (4, )?,F,. A can be indefinite and even nonsymmetric. For such matrices, a
" general framework for the construction-of variable-step preconditioners utilizing parameter free inexact solvers,
for instance by use of a conjugate gradient method to compute inner iterations for the first matrix block A;; and
for the Schur complement matrix S = Az2—A21 AJ}! A1z, was studied.

The disadvantage with this method is that the action of Aj; is required two or more times during each outer
iteration. These actions must be sufficiently accurate otherwise the rate of convergence can be too slow or even
divergence can occur. ‘

In the present paper a modified version of the algorithm is presented where only one accurate action is required
per step in addition to an action required only for the computation of the length of a steepest descent step, which
can therefore be less accurate.

The efficacy of this method will be evident in particular for problems arising in domain decomposition methods.

Key words. inner-outer iterations, variable-step preconditioner, GCG-method, domain decomposition, in-
exact solver.

AMS(MOS) subject classifications. 65F10, 65N30.

1. Introduction. We consider matrices partitioned in two-‘by-,two block form

’ An A12]
1.1 A= 1,
) Ay Aj

where A and A;; are assumed nonsingular and possibly nons“"}}‘m_metric and indefinite.
Based on the block-matrix factorization -

A—[ . 0] [A“ 0] [I AfAr
T lAndd - TLL 08D I :

where § = Ay;—A9; A{'llAn, the following familiar block-matrix form of A~! is derived,

A1 2[@] -AﬁlAlz] a0 I 0
0 I 0 S-'}|l-AnAfy I

* Faculty of Mathematics and Informatics, Catholic University, NL-6525 ED Nijmegen, The Netherlands. -
! Department of Mathematics, University of Wyoming, University Station, P.O. Box 3036, Laramie; WY 82071,
USA. Email: panayot@uwyo.bitnet
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2 O. AXELSSON and P.S. VASSILEVSKI

_[1 -AﬁlAle ALl 0 ]
— 1o I —S_lAglA;ll S-1)-

V1

, we have
vz

Then for a corresponding partitioning of a vector v, v = [

L [ - A7 (A125 N(vy— A21A11 (v1))+AL ”1)]
- 5 ve—An ALy (v1))

To compute this we need two actions of AJj, or even three or more depending on the imple-
mentation, because each action of S involves among other things an action of A}

As has been shown by the authors in [5], a variable-step preconditioner, i.e. a preconditioner
which can change from one iteration to the next can be constructed using approximate solvers
for A;; and S based on iterative methods using the conjugate gra,dlent method for instance.

There are then given two, in general nonlinear mappings,

(12) A

v; = Buv], . v — Clvg]
that satisfy
(1.3&) » ”AllBll[vI]_'UIHO S 51”'01“07 for all (3
(13b) ||SC[’()2]—-122”0 S 62“’02“0, for all U2

where €1, ¢, are sufficiently small positive numbers and norms,
Y | ~ o~y 22
lvallo = {(F1,81)0}2,  lvallo = {(%2, D2)o}?
based on a corresponding inner product,

(’U, 'U)O = (51,51 )0 + (;629:52)09

- vl - 0 , 2o Do N
where 7, = [ 01], Uy = [v ] (For simplicity, we use the same notations for the norms in the
2

different vectorspaces.)

Every action of A7}! and S~! in (1.2) is now replaced by their approximations Bi1[] and
C[-], respectively and this defines a variable-step (or nonlinear) preconditioner B[v] for A~1v.
The variable-step preconditioner proposed in [5] is then defined by the following algorithm:

ALGORITHM 1

1) wy = Byi[v]

2) wy=-Anwi+v;
3) Ty = C[‘wz]

4) 1 = Az

5) z1 = Bulyl]

6) 1 = w—21.
Then B[v] = [2] Note that if in Algorithm 1 we have Byy[v1] = Aj'v; and Clvz]'s 571y,
we obtain B[v] = A~ 1v. ‘ |



INVITED LECTURES ‘ 3

The mappings Bji[-] and C[] correspond in practice frequently to some inner iteration
methods. To check if we have performed a sufficient number.of such inner iterations, i.e. to
check if the corresponding mappings Byi[-] and C[-] are sufficiently accurate, we can use the
following tests, which involve only vectors computed during the iterations:

(1.4a) |A11wi—v1llo < e1flvallo,  l|A1121—w1llo < 1llwnllo,

which check if the iterative solutions w; and z; in steps 1) and 5), respectively are sufficiently
accurate, and

(1.4b) | 2222~ A2121—w2llo < €2|w2llo

where wy = v,—Azjwy, which checks if the solution z; in step 3) is sufficiently accurate.

However, the last check involves the vector z; which is available only in step 5). Hence
(1.4b) is actually performed after step 5). This means that we may have to repeat steps 4) and
5) after we computed a more accurate solution in step 3), if (1.4b) failed to be satisfied initially.

In practice, it can be advisable to test instead on the sign of the leading coefficient in the
conjugate gradient method (which must be positive if the preconditioned operator has a positive
definite symmetric part, see [1]). If the sign test is violated, we repeat algorithm 1 with more
inner iterations, which corresponds to choosing smaller values of ¢;,¢€5.

To estimate the deviation of AB[v] from v we note first that Algorithm 1 shows that

' [ An An)[n v
(1.5) AB[v) - v o ] [zz] in [vz]
'A11(w1-21)+A1212] i ['Ul}
| Ag1(wy—21)+ A2z vy
N 'A11w1—vx—(A1121—y1)]
& Agy—wo—An 2y

Let
(1.6) o1 = || 41257 lo, 02 = [| 42147} [lo-

We assume that €107 < 1. Note now that (1.4a) shows that
(1.7) lwallo < llvallo + [l A21 477 Anawllo < [lvallo + o2/l Anywilo
< lvz2llo + o2(1+¢1)]|valo-
Further ,
(1.8) lvillo = l|A1222ll0 = || 4128 SCwy]llo < 1| SCw3]llo
< a1{llwzllo + [|SClwa] — wallo].
Now using (1.4 a,b) we get

|SClwz]=wallo = ||Sz2—wsllo =
|A2222— A2 AT} Ar2za—w2ljo =
| A2222— Ag1 Bri[yr | —wa+ Ay (Bua[n]— ALl A1222)o <
| Az2z2~ Agy 21 —wa+A2 AT [Annz1—u1]llo <
e2||wallo+o2€1 (|91 1fo-
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This, and (1.8) show that
llwllo < oalllwzllo + e2llwallol/(1-€102)

so, together with (1.7) we get

(19) (1+e1)llvallo)/(1—€102). .
(1.5), (1.7), (1.4a,b) and (1.9) show now that

< {(lAnwi—villo + [|[An1z1—w1llo)® + || Azoz2— w2 —Ag1 21|12} 7

< JJAnwi—vllo + [An1zi—v1llo + [|A2222—w2— A2 210

< allullo + ex(1+e2)on[l|vzllot+o2(1+€1)|vallo] /(1 -€102)
+eal|v2llo + e2(1+€1)02||vello

[e1+e1(14€1)(14€2)0102/(1~€102)+e2(1+€1) o] |01 lo
+[e2+e1(14+€2)01/(1-€102)]||v2llo

< Cler,€2,01,03)|vllo,

||AB[v]—v]|o

1
where ||v]lo = {[|v1]|? + ||v2||*}=. Here

C(e162,01,02) < V2 max{e;+e1(1+¢€1)(1+e2)o102/(1—€102)+e2(1+€1) 02,
(1.10) ., [e2+€1(1+€2)01/(1-€102)]}-

Note that.
C(e1,€2,01,02) < V2[e1+€101+€10109+€2+€202), €1,62 — 0.
In [5] it was shown that for £;,¢; sufficiently small,’ AB(['] is coercive and bounded, namely
(v, AB[t])o 2 (1=C?)[Je[l3, for all v
and
I AB[2]llo < (14+C3)o]l8, for all v.

It was also shown that for the residuals r* = Az*—b, k =0,1,... computed by a preconditioned

generalized conjugate gradient (GCG) method, or even by a preconditioned steepest descent .

method, with the variable-step preconditioner B[:], the following convergence rate estimate
holds:

k
81\2\ 2
I < (1= (£)°) 1o, k20,

where §; = 1 —C%, by = 1405,
Note that the above method is parameter free, i.e. for a user the method looks like a
“black-box”. h - “
In Axelsson and Vassilevski [5] several particular applications of the construction of variable-
step preconditioners are demonstrated, namely for two-level hierarchical itera.tih?’e\methods for

N e
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the finite element discretization of non-self adjoint elliptic problems, for mixed finite element
discretization of second order elliptic problems and for Stokes equation. Related results for
the latter application were studied earlier by Bank, Welfert and Yserentant [9], by Langer and
Queck [17], Verfiirth [22] and more recently with application to domain decomposition methods
with inexact subdomain solvers by Boérgers [11], Langer [16] and Y. Vasilevskij [21]. However, in
all of these papers the constructed preconditioner is either a fixed matrix or the global (outer)
iterative method is a stationary one, i.e. not of a variational type.

In the present paper we simplify our original method in such a way that only one accurate
inner iteration step with the mapping Bi;[-] is required per outer iteration. This is made
possible by use of a parameter free method to construct approximate inverses for the action
of an approximate Schur complement S vy = Agavy— Az B11[A;2v2] or for the residuals arising
from the approximate Schur complement reduced system for a defect corrected global system.
Although we work on the reduced system we can show convergence for the global system and .
with a rate which depends only on the accuracy of the mappmg Bu[] and of the approximate
inverse of the Schur complement.

Before presenting the new method we consider a general method to construct approximate
inverses to nonlinear mappings that are almost linear. This method will then be applied when
we compute actions of approximations of the inverses of the Schur complement matrix.

2. Construction of approximate inverses to nonlinear mappings that are almost
linear. Consider first the following nonlinear equation,

(2.1) Alz] = v,

where the mapping A[ ] is assumed to be sufficiently close to a linear in the sense that for some
matrix A, we have

(2.2) |Az~A[z]|1 < 6]|Az|j1, for all z,

where é € (0,1) is sufficiently small and where ||z||; = /{2, 2),; is a given norm, defined by an
inner product (-,-);. The mappings A and A can be preconditioned forms of some operators A

and A, say, by some preconditioning matrix D. For notational simplicity we do not give this
preconditioner in explicit form. As an application of this, in the following section, A will be a
Schur complement matrix and A an approximation of A whose closeness to A is fully controlled
by the number of inner iterations used to solve systems with the top matrix block of the original
global system. v

We assume that A satisfies the following boundedness and coercivity properties, i.e. for
some positive constants 7;,72 we have

(2.3) Nl Az]ly < 72llz]ls, for all z,

(2.4) (Az,z); 2 n(z,z);, forall z.

Note that for this to hold the matrix A need not be symmetric.
We consider now the following vanatlona.l type algorithm to approximately solve the non-
linear equation (2.1).
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ALGORITHM 2.
initiate: choose z%; r® = v— A[z");
for k. =1,2,... compute
~ S A‘[rk-—ll;
Oy = (e P Lo

k

z = gh~V o qgiyrkl;

k= v—A[z);

It can be seen that for a linear mapping, i.e. a matrix A, the above algorithm reduces to
the steepest descent method to compute iterations z* for which we have monotone convergence
with steepest descent method decay in the gradient of the functional (7*,7¥),.

The next theorem shows that algorithm 2 gives an approximate solution of (2.1), which
converges with a geometric rate of convergence.

THEOREM 2.1. The k-th iterate z*, k > 1, generated by Algorithm 2 satisfies the inequality,

lo-AlHlh < [¢* + ﬁlz—_‘s&] lloll1s

where

g =\/1-(M1/72)% +46/(1-6), -

Y1 = 11—=072, Y2 = (1+6)72, 6 is the constant in (2.2) and where 71,7, are defined in (2.3),
(2.4), respectively. We assume that 6, 0 < 6 < 1, is sufficiently small to make ¢ < 1, and we
see that we can get an arbitrarily accurate solution z* satisfying

llo = Alz*]llx < [e+0(8)]l1v]lx

by choosing é sufficiently small and performing k = O(log 1) iterations, where ¢ is the relative
stopping accuracy.

Proof. First we show that A[] itself is bounded and coercive. Using (2.2), (2.3) and (2.4)
one readily derives

(Alz], z)1 = (Alz]-Az,2) + (Az;2) > (11-672)(2, 2 )1,
and
I Alz]ll: < (1+8)[| Azl < (1+8)y2llalls-
Hence, for the (k — 1)st residual r*~! in Algorithm 2, we have

(rk=1, A[rk=1]) > Fyl|r*-1 )2
(2.5) B A
(A[r*-1], A[r-1]), < 7375112,



