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Preface

The theory and practice of the. analysis of time series has followed two lines
‘almost since its inception. One of these proceeds from the Fourier trans-
formation of the data and the other from a parametric representation of the
temporal relationships. Of course, the two lines are interrelated. The frequency
analysis of data was surveyed in Volume 3 of the present Handbook of Statistics
series, subtitled, 'Fune Series in the Frequency Domam, edited by D. R.
Brillinger and P. R. Krishnaiah. Time domain methods are dealt with in this
volume. The methods are old, going back at least to the ideas of Prony in the
eighteenth century, and owe a great deal to the work of Yule early this century.

Several different techniques for classes of nonstationary processes have been
developed by various analysts. By the very nature of the subject in these cases,
the work tends to be either predommantly data. analysxs oriented with scant
justifications, or mathematically onenmd with inevitably advanced arg stnents.
This volume contains descriptions of both these approaches by strer gthening
the former and minimizing the lattér, and yet presenting the state-of-the-art in
the subject. A brief indication of ] tk included is as follows.

One of the successful paramet odels is the classical autoregressive
scheme, going back to the pioneeri ork of G. U. Yule, early in this ceutury.
The model is a dlfference equation with constant coeﬂ‘iments, and much of the
classical work is done if the roots o its characteristic equation are interior to
the unit circle. If the roots are of umt modulus, the analysis presents many
difficulties. The advances made in recent years in tlus area are described in W.
Fuller’s article. An important development in the time domain area is the work
of R. Kalman. It led to the emphasis on a formalization .of rational transfer
function systems. as defined by an underlying state vector generated in a
Markovian manner and observed subjeci to noise. This representation is
connected with a rich structure theory whose understanding is central in the
subject. It is surveyed in the article by M. Deistler. The structure and analysis of
several classes of nonstationary time series that are not of autoregressive type
but for which the ideas of Fourier analysis extend is given in the article by M.
M. Rao; and the filtering and smoothing problems are discussed by D. K.
Chang. Related results on what may be termed “asymptotically stationary” and
allied time series have been surveyed in C. S. K. Bahagavan’s paper.

The papers by L. Ljung, P. Young and G. C. Tiao relate to the estimation
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problems in the dynamical modelling systems. Here Young’s paper deals with
the on-line (real time) calculations. Cne of the uses of these models has been to
analyze the consequences -of an intervention (such as the introduction of
exhaust emission laws) and-another to consider the outlier detection problems.
These are discussed by, Fiao-and T. Ozaki. Though rational transfer function
“models are parametric; it is seldom the case that the model set contains the
truth and the problem may better be viewed as ol of selecting ‘a structure
from an infinite set in some asymptotically optimal manner. This point of view
'is explored by R. Shibata. Though ieast squares techniques, applied o the
" prediction errors, have dominated, there is a need to modify g‘he_:sc to obtain
estimators less influenced by discrepant observations. This is treated by iiao
and, in au extensive discussion, by R. D. Martin and V. J; Yohai. The modzl
selection and unequally spaced data are natural problems in this:area confront-
ing the experimenter, and these are discussed by R. H. Jones. Smce the, time
points may sometimes be:-under control of the experimenter,’ ‘their optimal
choice must be considered. This problem is treated by S. Cambams The
modeliing in the papers referred to above has been essentially linear. Ozaki
presents an approach to the difficult problem of nonlinear modelling.

The autoregressive models may havé time varying parameters, and this is
considered by D. F. Nicholls and A.'R. Pagan. Their paper has special
refererice to economemc ‘data as does also the paper by H. Thcll and D. G.
Fiebig who treat the problem.where the regressor vectors in -a ‘multivariate
system may be of a dimension hlgher than the number of time points for
observation. The ﬁnﬂ ‘two papers on applications by M. A. Cameron, P. J.
Thomson and P. de- Suza complement the areas covered by- the preccdmg
ones. These are desxgned to show' two special apphcatlons, namely in signal
attenuation estlmauon and speech recognition.

Thus several aspects of the time domain analysis and thé curfent.trends are
described in the different chapters of this volume. So they will-be ‘of interest
not only to the research workers in the:area of time series, but ‘also to data
analysts who use these techniques in their work.

We wish to express our sincere apprematmn to the authors for thelr excellent
cooperation. We also thank the North-HoHand Publlshmg Company for their
CO()pCTdUOD

"E;- J. Hannan
P. R. Krishnaiah
" M. M. Rao
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Nonstationar)';'r Autoregressive Time Series
M({ayne A. Fuller

1. Introduction

A ‘model often used to describe the behavior of a variable over time is the
. autoregressive model. In this model it is assumed that the current value can be
expressed as afunction of preceding values and a random error. If we let Y,
denote the value of the variable at time t, the pth-order real valued autore-
gressive time series is assumed to satisfy
- :
Y,zg(:)+2aY,_,+e t=142..., (1.1)
i=1 N
where the ¢, t=1,2,..., are random variables and g(¢) is a real valued fixed
function of time. We have chosen to define the autoregressive time series on
the positive integers, but the: time series might be defined on other domains.
The statistical behavior of the time series is determined by the initial values
(Yy, Yy, ..., Y_,,y), by the function g(t), by the coefficients (a,, a,, ..., a,),
and by the stochastic properties of the e, We shall, henceforth, assume that the
e, have zero mean and variance ¢°. At a minimum we assume the ¢, to be
uncorrelated. Often we assume the e, to be independently and identically
distributed. -
Let the joint distribution function of a finite set {Y,, Y,,..., ¥} of the Y,
be denoted by 2

FY, ..... Y, (yrpyrz""syr,,)'

r 2

The time series is strictly stationary if

FY B 07— )".(.”l: YQ’ SLoR ) Y1,) . FY,l,h. Y’z*" ..... Y,“”.(ym yq* e yt,,)

L

for all possible sets of indices #,,1,,...,¢, and t;,+ h,t,+ h,...;t, + h in the set
{1,2,...}. The time series is said to be covariance stationary if

E{Y}=pn, t=1,2,...,
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and -
E{Y,—uXY,y—n)=yh), t=12,...; h=0,1,...,

where u is a real number and y(h) is a real valued function of h.
To study the behavior of the time series Y, we solve the difference equation

(1.1) and express Y, as a function of (e,, e,, . . ., e)and (Y, Y.,,..., Y_,.1)- The
difference equation

P
=2 ow;_; (1.2)
" I=1

with initial conditions
wy=1, w;=0, i=-~1,-2...,

has solution of the form
P ) ;
w; = cmi, (1.3)
j=1
where m; are the roots of the characteristic equation

m’ =3 am’ =0, (1.4)
j=1 : ;
the coefficients ¢; are of the form

¢y = b, : T (1.5)

and the b; are such that the initial conditions are satisfied. The exponent k; is
zero if the root m; is a distinct root. A root with multiplicity r has r coefficients
with k;=0,1,...,r-1. -

Using the w,, the time series Y, can be written as

t-1 p-1 -1
Y, = 2 we, ; + Z oY+ 2 wg(t—1i). (1.6)
i=0 i=0 . i=0
The meah of Y, is
-1

E{Y}=> wg(t-i)+ §_j w,E{Y_}. v 1.7)
i=0 i=0

Therefore, if (Y,, YV_,, ..., Y_,,H)'is a fixed vector, the variance of Y, is a function
of ¢ and Y, is not stationary.
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If the roots of (1.4) are less than one in absolute value, then w; goes to zero
as i goes to infinity. One common model is that in which g(t) = a,. Assume that
(Yo Yoibo oo Y_p,,,) is a vector of random variables with common mean

aof1- 3 ai>—1 (1.8)

i=1
common variance
S w? (1.9)
i=0

and covariances

E{YY,}=0"D ww., Lt+h=0,-1,...,-p+1. (1.10)
i=0

If g(t)=a, if (Yo, Y.y, ..., Y_,,) is independent of (e, e,,...), and if the
initial conditions satisfy (1.8), (1.9) and (1.10), then Y, is covariance stationary.
If the initial conditions do not satisfy (1.8), (1.9) and (1.10), the time series
will display a different behavior for small ¢ than for large ¢t However, if
g(t)= ay and the roots of the characteristic equation are less than one in
absolute value, the nonstationarity is transitory. In such a situation, the large-¢

behavior is that of a stationary time series.

2. The first-order model $
We begin our discussion with the first-order model
Y=ayta,Y,_te, t=12...,

=Y, t=0.

¢

2.1

Given n observations on the process, several inference problems can be
considered. One is the estimation of a,. Closely related to the estimation
problem is the problem of testing hypotheses about «,, particularly the
hypothesis that a, = 1. Finally, one may be interested in predicting future
observations.

A natural estimator for (a,, a,) is the least squares estimator obtained by
regressing Y, on Y,_,, including an intercept in the regression. The estimators
are :

n 3 -1 " - —
TR DIILAES 70 ID LA AVCAS B
t=1 =1

S (22)
@y= Yo~ Yendi,



