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EXACTAND APPROXIMATE CONTROLLABILITY FOR
DISTRIBUTED PARAMETER SYSTEMS

The behavior of systems occurring in real life is often modeled by partial
differential equations. This book investigates how a user or observer can influence
the behavior of such systems mathematically and computationally. A thorough
mathematical analysis of controllability problems is combined with a detailed
investigation of methods used to solve them numerically, these methods being
validated by the results of numerical experiments. In Part I of the book, the authors
discuss the mathematics and numerics relating to the controllability of systems
modeled by linear and nonlinear diffusion equations; Part II is dedicated to the
controllability of vibrating systems, typical ones being those modeled by linear
wave equations; finally, Part III covers flow control for systems governed by the
Navier—Stokes equations modeling incompressible viscous flow. The book is
accessible to graduate students in applied and computational mathematics,
engineering, and physics; it will also be of use to more advanced practitioners.
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Preface

During ICIAM 1995, in Hamburg, David Tranah approached Jacques-Louis Lions
and myself and asked us if we were interested in publishing in book form our two-
part article “Exact and approximate controllability for distributed parameter systems”
which had appeared in Acta Numerica 1994 and 1995. The length of the article (almost
300 pages) was a justification, among several others, for such an initiative. While
I was very enthusiastic about this project, J.L. Lions was more cautious, without
being against it. Actually, his reservation concerning this book project was stemming
from recent important developments on controllability related issues, justifying, in
his opinion an in-depth revision of our article. Both of us being quite busy, the project
was practically forgotten. As everyone knows in the Scientific Community, and else-
where, Jacques-Lions passed away in June 2001, while still active scientifically. He
largely contributed in making the Control of Distributed Parameter Systems a most
important field where sophisticated mathematical and computational techniques meet
with advanced applications. Therefore, when David Tranah renewed his 1995 sug-
gestion during a conference of the European Mathematical Society held in Nice in
February 2003, we thought that it would be a very nice way to pay to J.L. Lions the
tribute he fully deserves. The idea was to respect as much as possible the original text,
since it largely reflects J.L. Lions’ inspired scientific vision, and also its inimitable
way at making simple complicated notions. On the other hand, it was also agreed that
additional material should be included to make the text more up to date. Most of these
additions are concerned with flow control; indeed, for J.L. Lions, the control of flow
modeled by the Navier—Stokes equations was a kind of scientific Holy Grail and we
are most happy that he could witness the first real mathematical and computational
successes in that direction, all taking place in the late 1990s.
The present volume is structured as follows:

e Motivations and some broad generalities are given in the Introduction.

e Part I is dedicated to the control of linear and nonlinear diffusion models; it con-
tains Sections 1-5 of the Acta Numerica article, with additional materials such as
the Neumann control of unstable advection—-reaction—diffusion models, and a dis-
cussion of computer memory saving methods for the solution of time-dependent
control problems by adjoint-equation-based methods. A short introduction to
Riccati-equation-based control methods is also provided.
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e Part I is concerned with the controllability of wave equation type models and of
coupled systems. This material corresponds essentially to Sections 6 and 7 of the
Acta Numerica article.

e Part III is the main addition to the original text; it is dedicated to the boundary
control, by either rotation or blowing and suction, of Newtonian incompressible
viscous flow modeled by the Navier—Stokes equations.

Since most of the additional material follows from investigations conducted jointly
with Professor Jiwen He, a former collaborator of J.L. Lions, all the parties involved
found it quite natural to have him as a coauthor of this volume.

Acknowledgments and warmest thanks should go first to David Tranah, Ken Blake,
and Cambridge University Press for encouraging the publication of this augmented
version of the Acta Numerica article, and also to Mrs Andrée Lions and Professor
Pierre-Louis Lions for their acceptation of this project. The invaluable help of Dr
H.L. Juarez (UAM-Mexico City) and of his collaborators (Bety Arce, in particular)
is also acknowledged; they converted large parts of a text initially written in Word®
to a BTEX© file, a nontrivial task indeed considering the size of this volume.

Special thanks are due to S. Barck-Holst, M. Berggren, H.Q. Chen, J.M. Coron,
J.I. Diaz, S. Gomez, M. Gorman, A.J. Kearsley, B. Mantel, R. Metcalfe, J. Périaux,
T.-W. Pan, O. Pironneau, J.-P. Puel, A.M. Ramos, T. Rossi, D. Sorensen, J. Toivanen,
and E. Zuazua for very helpful comments and suggestions concerning the additions to
the original article (further acknowledgments may be found at the end of this volume;
they concern the original Acta Numerica article).

We will conclude this preface with further thanks to Cambridge University Press
for authorizing the reprinting of the above Acta Numerica article in Volume III of
J.L. Lions, Oeuvres Choisies, SMAI / EDP Sciences, Paris, 2003, a three-volume
testimony of the outstanding scientific contributions of Jacques-Louis Lions.

Guanajuato, Mexico Roland Glowinski
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Introduction

I.1 What it is all about?

We consider a system whose state is given by the solution y to a partial differential
equation (PDE) of evolution, and which contains control functions, denoted by v.

Let us write all that in a formal fashion for the time being. The state equation is
written as

dy

5, TAG) = B, (L1)

where y is a scalar- or vector-valued function.

In (I.1), A is a set of partial differential operators (PDOs), linear or nonlinear (at
least for the time being). In (I.1), v denotes the control and B maps the “space of
controls” into the “state space”. It goes without saying that all this has to be made
more precise. This will be the task of the following sections.

The PDE (I.1) should include boundary conditions. We do not make them explicit
here. They are supposed to be contained in the abstract formulation (I.1), where v
can be either applied inside the domain @ C R?, where (I.1) is considered (v is
then a distributed control), or on the boundary I" of 2 — or on a part of it (v is
then a boundary control). If v is applied at points of €2, v is said to be a pointwise
control.

One has to add also initial conditions to (1.1): if we assume that # = 0 is the initial
time, then these initial conditions are given by

Yli=0 = yo, (12)

with yg being a given element of the state space.

It will be assumed that, given v (in a suitable space), problem (I.1)—(1.2) (and the
boundary conditions included in the formulation (I.1)) uniquely defines a solution.
This solution is a function (scalar- or vector-valued) of x € €, ¢ > 0, and of yg and
v. We shall denote this solution by y(v) (= {x,t} — y(x,¢;v)). Similarly, we shall
denote by y(z; v) the function x — y(x,t; v). Then, the initial condition (I.2) can be
written as

y(0;v) = yo. (1.2%)
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Remark I.1 The notions to be introduced below can be generalized to situations
where the uniqueness of the solution to problem (I.1)(1.2) is not known. We are
thinking here of the Navier-Stokes equations (and related models) when the flow
region €2 is a subset of R (and the Reynolds number is sufficiently large).

We can now introduce the notion of controllability, either exact or approximate.

Let T > 0 be given and let yr (the target function) be a given element of the state
space. We want to “drive the system” from yg at# = O to yr at# = T, that is, we want
to find v such that

y(T;v) =yr. (1.3)

If this is possible for any target function y7 in the state space, one can say that
the system is controllable (or exactly controllable). If — as we shall see in most
of the examples — condition (I.3) is too strict, it is natural to replace it by the less
demanding one

y(T';v) belongs to a “small” neighborhood of y7. (L4)

[fthis is possible, one says that the system is approximately controllable; otherwise,
the system is not controllable.

Before giving precise examples, we want to say a few words concerning the
motivation for studying these controllability problems.

1.2 Motivation

There are several aspects that make controllability problems important in practice.

Aspect#1 Ata given time-horizon, we want the system under study to behave exactly
as we wish (or in a manner arbitrary close to it).

Problems of this type are common in Science and Engineering: we would like,
for example, to have the temperature (or pressure) of a system equal, or very close,
to a given value — globally or locally — at a given time. Chemical Engineering is
an important source of such problems, a typical example in that direction being
the design of car catalytic converters; in this example chemical reactions have to
take place leading to the “destruction” at a given time-horizon (very small in prac-
tice) of the polluting chemicals contained in the exhaust gases (the modeling and
numerical simulation of catalytic converter systems are discussed in, for example,
Engquist, Gustafsson, and Vreeburg (1978), Friedman (1988, Chapter 7), and Friend
(1993)).

Aspect # 2 For linear systems, it is known (cf. Russel (1978)) that exact controlla-
bility is equivalent to the possibility of stabilizing the system.

Stabilization problems abound, in particular in (large) composite structures — the
so-called “multibody” systems made of many different parts which can be considered
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as three-, two-, or one-dimensional and which are linked together by junctions and
Jjoints. The modeling and analysis of such systems are the subject of many interesting
studies. We want to mention here the contributions of P.G. Ciarlet and his collaborators
(see, for example, Ciarlet, Le Dret, and Nzengwa, 1989, Ciarlet, 1990a,b), and those
of Sanchez-Hubert and Sanchez-Palencia (1989), Lagnese, Leugering, and Schmidt
(1992, 1994), J. Simo and his collaborators (see, for example, Laursen and Simo,
1993), Park and his collaborators (see, for example, Park, Chiou, and Downer, 1990
and Downer, Park, and Chiou, 1992).

Studying controllability is one approach to stabilization as shown in, for example,
J.L. Lions (1988a).

Aspect# 3 (On controllability and reversibility): Suppose we have a system that was
in a state z; at time ¢ = —fy, fo > 0, and that is now (that is, at # = 0) in the state yy.

We would like to have the system returning to a state as close as possible to z1, that
is, y7 = z1. If this is possible, it means some kind of “reversibility” property for the
system under consideration. What we have in mind here are environmental systems;,
should they be “local” or “global” in the space variables?

Noncontrollable (sub)systems can suffer “irreversible” changes (cf. J.L. Lions,
1990 and Diaz, 1991).

We return now to the general questions of Section 1.1, making them more precise
before giving examples.

1.3 Topologies and numerical methods

The topology of the state space appears explicitly in condition (I.4). It is obvious
that approximate controllability depends on the choice of the topology on the state
space, that is, of the state space itself. Actually, exact controllability depends on
the choice of the state space as well. The choice of the state space is therefore an
obviously fundamental issue for the theory. We want to emphasize that it is also a
fundamental issue from the numerical point of view. Indeed, if one has (as we shall
see in several situations) exact or approximate controllability in a very general space
(which can include elements that are not distributions but “ultra-distributions”) but not
in a classical space of smooth (or sufficiently smooth) functions, then the numerical
approximation will necessarily develop singularities; “remedies” should be based on
the knowledge of the topology where the theoretical convergence is taking place. We
shall return on these issues in the following sections; actually, some of them have
been addressed in, for example, Dean, Glowinski, and Li (1989), Glowinski and Li
(1990), Glowinski, Li, and Lions (1990), Glowinski (1992a), where various filtering
techniques are discussed in order to eliminate the numerical singularities mentioned
above.

In the next section we shall address the following question (of general nature also),
namely,

How to choose the control?
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1.4 Choice of the control

Let us return to the general formulation (I.1), (1.2), (I.3), (or (I.4)). If there exists,
one control v achieving these conditions, then there exist, in general, infinitely many
other controls, vs, also achieving these conditions. Which one should we choose
and how?

A most important question is: how to norm (we are always working in Banach or
Hilbert spaces) the vs? This is related to the fopology of the state space. It is indeed
clear that the regularity (or irregularity!) properties of v and y in (I.1) are related.
Let us assume that a norm v > ||v|| is chosen. Once this choice is made, a natural
formulation of the problem is then to find

inf{jvl, (L.5)

among all those vs such that (I.1), (I.2), (1.3), or (I.4) take place.

Remark 1.2 There is still some flexibility here since problem (0.5) still makes sense
if one replaces ||-|| by a stronger norm. This remark will be of practical interest as
we shall see later on.

Remark 1.3 One can encounter questions of controllability for systems depending
on “small” parameters. Two classical (by now) examples are

(1) Singular perturbations.
(ii) Homogenization which is important for the controllability of structures made of
composite materials.

In these situations one has to introduce either families of norms in (I.5) or norms
equivalent to ||-]|, but which depend on the homogenization parameter.

I.5 Relaxation of the controllability notion

Let us return again to (I.1) and (1.2):

Condition (I.3) concerns the state y itself. In a “complex system” this condition
can be (and will be in general) unnecessarily strong. We may want some subsystems
to behave according to our wishes. We may also want some average values to behave
accordingly, and so on. A general formulation is as follows:

We consider an operator

C e L(Y,H), (1.6)
where Y is the state space (chosen!) and where H is another Banach or Hilbert space
(the observation space). Think, for instance, of C as being an averaging operator.

Then, we “relax” condition (I.3) (respectively (1.4)) as follows:

Cy(T;v) = hr, hrgiveninH (L.7)



