ROLAND GLOWINSKI, JACQUES-LOUIS LIONS AND JIWEN HE

Exact and Approximate Controllability for Distributed Parameter Systems

A Numerical Approach

ENCYCLOPEDIA OF MATHEMATICS



A Numerical Approach

ROLAND GLOWINSKI University of Houston

JACQUES-LOUIS LIONS College de France, Paris

> JIWENHE University of Houston







CAMBRIDGE UNIVERSITY PRESS

# CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521885720

© R. Glowinski, J.-L. Lions and J. He 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

Library of Congress Cataloging in Publication data

Glowinski, R.

Exact and approximate controllability for distributed parameter systems : a numerical approach / Roland Glowinski, Jacques-Louis Lions, Jiwen He.

p. cm.

Includes bibliographical references and index. ISBN 978-0-521-88572-0 (hardback : alk. paper) 1. Control theory. 2. Distributed parameter systems. 3. Differential equations, Partial–Numerical solutions. I. Lions, Jacques Louis. II. He, Jiwen. III. Title. QA402.3.G56 2008 515'.642–dc22

#### 2007042032

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

# EXACT AND APPROXIMATE CONTROLLABILITY FOR DISTRIBUTED PARAMETER SYSTEMS

The behavior of systems occurring in real life is often modeled by partial differential equations. This book investigates how a user or observer can influence the behavior of such systems mathematically and computationally. A thorough mathematical analysis of controllability problems is combined with a detailed investigation of methods used to solve them numerically, these methods being validated by the results of numerical experiments. In Part I of the book, the authors discuss the mathematics and numerics relating to the controllability of systems modeled by linear and nonlinear diffusion equations; Part II is dedicated to the controllability of vibrating systems, typical ones being those modeled by linear wave equations; finally, Part III covers flow control for systems governed by the Navier–Stokes equations modeling incompressible viscous flow. The book is accessible to graduate students in applied and computational mathematics, engineering, and physics; it will also be of use to more advanced practitioners.

#### ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing

visit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM

- 62 H. O. Fattorini Infinite Dimensional Optimization and Control Theory
- 63 A. C. Thompson Minkowski Geometry
- 64 R. B. Bapat and T. E. S. Raghavan Nonnegative Matrices with Applications
- 65 K. Engel Sperner Theory
- 66 D. Cvetkovic, P. Rowlinson, and S. Simic Eigenspaces of Graphs
- 67 F. Bergeron, G. Labelle, and P. Leroux Combinational Species and Tree-Like Structures
- 68 R. Goodman and N. Wallach Representations and Invariants of the Classical Groups
- 69 T. Beth, D. Jungnickel, and H. Lenz Design Theory 1, 2nd edn
- 70 A. Pietsch and J. Wenzel Orthonormal Systems for Banach Space Geometry
- 71 G. E. Andrews, R. Askey, and R. Roy Special Functions
- 72 R. Ticciati Quantum Field Theory for Mathematicians
- 73 M. Stern Semimodular Lattices
- 74 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations I
- 75 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations II
- 76 A. A. Ivanov Geometry of Sporadic Groups I
- 77 A. Schinzel Polynomials with Special Regard to Reducibility
- 78 H. Lenz, T. Beth, and D. Jungnickel Design Theory II, 2nd edn
- 79 T. Palmer Banach Algebras and the General Theory of \*-Albegras II
- 80 O. Stormark Lie's Structural Approach to PDE Systems
- 81 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables
- 82 J. P. Mayberry The Foundations of Mathematics in the Theory of Sets
- 83 C. Foias, O. Manley, R. Rosa, and R. Temam Navier-Stokes Equations and Turbulence
- 84 B. Polster and G. Steinke Geometries on Surfaces
- 85 R. B. Paris and D. Kaminski Asymptotics and Mellin-Barnes Integrals
- 86 R. McEliece The Theory of Information and Coding, 2nd edn
- 87 B. Magurn Algebraic Introduction to K-Theory
- 88 T. Mora Solving Polynomial Equation Systems I
- 89 K. Bichteler Stochastic Integration with Jumps
- 90 M. Lothaire Algebraic Combinatorics on Words
- 91 A. A. Ivanov and S. V. Shpectorov Geometry of Sporadic Groups II
- 92 P. McMullen and E. Schulte Abstract Regular Polytopes
- 93 G. Gierz et al. Continuous Lattices and Domains
- 94 S. Finch Mathematical Constants
- 95 Y. Jabri The Mountain Pass Theorem
- 96 G. Gasper and M. Rahman Basic Hypergeometric Series, 2nd edn
- 97 M. C. Pedicchio and W. Tholen (eds.) Categorical Foundations
- 98 M. E. H. Ismail Classical and Quantum Orthogonal Polynomials in One Variable
- 99 T. Mora Solving Polynomial Equation Systems II
- 100 E. Olivier and M. Euláliá Vares Large Deviations and Metastability
- 101 A. Kushner, V. Lychagin, and V. Rubtsov Contact Geometry and Nonlinear Differential Equations
- 102 L. W. Beineke, R. J. Wilson, and P. J. Cameron. (eds.) Topics in Algebraic Graph Theory
- 103 O. Staffans Well-Posed Linear Systems
- 104 J. M. Lewis, S. Lakshmivarahan, and S. Dhall Dynamic Data Assimilation
- 105 M. Lothaire Applied Combinatorics on Words
- 106 A. Markoe Analytic Tomography
- 107 P. A. Martin Multiple Scattering
- 108 R. A. Brualdi Combinatorial Matrix Classes
- 110 M.-J. Lai and L. L. Schumaker Spline Functions on Triangulations
- 111 R. T. Curtis Symmetric Generation of Groups
- 112 H. Salzmann, T. Grundhöfer, H. Hähl, and R. Löwen The Classical Fields
- 113 S. Peszat and J. Zabczyk Stochastic Partial Differential Equations with Lévy Noise
- 114 J. Beck Combinatorial Games
- 115 L. Barreira and Y. Pesin Nonuniform Hyperbolicity
- 116 D. Z. Arov and H. Dym J-Contractive Matrix Valued Functions and Related Topics
- 117 R. Glowinski, J.-L. Lions, and J. He Exact and Approximate Controllability for

比/J 证 Distributed Parameter Systems 门间切口:WWW. ertongbook. com

To Andrée, Angela, and April, and to Dorian Lions

LENS LARQUE-homonyms, with definitions.

- 1. Lencilorqua: a village of 657 inhabitants on Vasselona Continent, Reis, sixth planet to Gamma Eridani.
- 2. Lanslarke: a predacious winged creature of Dar Sai, third planet of Cora, Argo Navis 961.
- 3. Laenzle arc: the locus of a point generated by the *seventh theorem of triskoïd dynamics*, as defined by the mathematician Palo Laenzle (907–1070).
- 4. Linslurk: a mosslike ...

Jack Vance, *The Face*. In *The Demon Princes*, Volume II, Tom Doherty Associates, Inc., New York, NY, 1997

The most challenging course I took in high school was calculus.

Bill Clinton, My Life, Knopf, New York, NY, 2004

The real trick to writing a book is writing. Until you have a book.

Adam Felber, Schrödinger's Ball, Random House, New York, NY, 2006

During ICIAM 1995, in Hamburg, David Tranah approached Jacques-Louis Lions and myself and asked us if we were interested in publishing in book form our twopart article "Exact and approximate controllability for distributed parameter systems" which had appeared in Acta Numerica 1994 and 1995. The length of the article (almost 300 pages) was a justification, among several others, for such an initiative. While I was very enthusiastic about this project, J.L. Lions was more cautious, without being against it. Actually, his reservation concerning this book project was stemming from recent important developments on controllability related issues, justifying, in his opinion an in-depth revision of our article. Both of us being quite busy, the project was practically forgotten. As everyone knows in the Scientific Community, and elsewhere, Jacques-Lions passed away in June 2001, while still active scientifically. He largely contributed in making the Control of Distributed Parameter Systems a most important field where sophisticated mathematical and computational techniques meet with advanced applications. Therefore, when David Tranah renewed his 1995 suggestion during a conference of the European Mathematical Society held in Nice in February 2003, we thought that it would be a very nice way to pay to J.L. Lions the tribute he fully deserves. The idea was to respect as much as possible the original text, since it largely reflects J.L. Lions' inspired scientific vision, and also its inimitable way at making simple complicated notions. On the other hand, it was also agreed that additional material should be included to make the text more up to date. Most of these additions are concerned with *flow control*; indeed, for J.L. Lions, the control of flow modeled by the Navier-Stokes equations was a kind of scientific Holy Grail and we are most happy that he could witness the first real mathematical and computational successes in that direction, all taking place in the late 1990s.

The present volume is structured as follows:

- Motivations and some broad generalities are given in the Introduction.
- Part I is dedicated to the control of *linear* and *nonlinear diffusion models*; it contains Sections 1–5 of the *Acta Numerica* article, with additional materials such as the Neumann control of unstable advection-reaction-diffusion models, and a discussion of computer memory saving methods for the solution of time-dependent control problems by adjoint-equation-based methods. A short introduction to *Riccati-equation*-based control methods is also provided.

### Preface

- Part II is concerned with the controllability of *wave equation* type models and of *coupled systems*. This material corresponds essentially to Sections 6 and 7 of the *Acta Numerica* article.
- Part III is the main addition to the original text; it is dedicated to the *boundary* control, by either rotation or blowing and suction, of *Newtonian incompressible viscous flow* modeled by the *Navier–Stokes equations*.

Since most of the additional material follows from investigations conducted jointly with Professor Jiwen He, a former collaborator of J.L. Lions, all the parties involved found it quite natural to have him as a coauthor of this volume.

Acknowledgments and warmest thanks should go first to David Tranah, Ken Blake, and Cambridge University Press for encouraging the publication of this augmented version of the *Acta Numerica* article, and also to Mrs Andrée Lions and Professor Pierre-Louis Lions for their acceptation of this project. The invaluable help of Dr H.L. Juárez (UAM-Mexico City) and of his collaborators (Bety Arce, in particular) is also acknowledged; they converted large parts of a text initially written in Word<sup>©</sup> to a  $\mathbb{M}T_{E}X^{\mathbb{O}}$  file, a nontrivial task indeed considering the size of this volume.

Special thanks are due to S. Barck-Holst, M. Berggren, H.Q. Chen, J.M. Coron, J.I. Diaz, S. Gomez, M. Gorman, A.J. Kearsley, B. Mantel, R. Metcalfe, J. Périaux, T.-W. Pan, O. Pironneau, J.-P. Puel, A.M. Ramos, T. Rossi, D. Sorensen, J. Toivanen, and E. Zuazua for very helpful comments and suggestions concerning the additions to the original article (further acknowledgments may be found at the end of this volume; they concern the original *Acta Numerica* article).

We will conclude this preface with further thanks to Cambridge University Press for authorizing the reprinting of the above *Acta Numerica* article in Volume III of J.L. Lions, *Oeuvres Choisies*, SMAI / EDP Sciences, Paris, 2003, a three-volume testimony of the outstanding scientific contributions of Jacques-Louis Lions.

Guanajuato, Mexico

Roland Glowinski

# Contents

| Preface |                                                              | pag | e xi |
|---------|--------------------------------------------------------------|-----|------|
|         |                                                              |     |      |
| Intr    | oduction                                                     |     | 1    |
| I.1     | What it is all about?                                        |     | 1    |
| I.2     | Motivation                                                   |     | 2    |
| I.3     | Topologies and numerical methods                             |     | 3    |
| I.4     | Choice of the control                                        |     | 4    |
| I.5     | Relaxation of the controllability notion                     |     | 4    |
| I.6     | Various remarks                                              |     | 5    |
|         |                                                              |     |      |
| Part I  | Diffusion Models                                             |     |      |
|         |                                                              |     |      |
| 1 Dist  | ributed and pointwise control for linear diffusion equations |     | 9    |
| 1.1     | First example                                                |     | 9    |
| 1.2     | Approximate controllability                                  |     | 12   |

| 1.3  | Formulation of the approximate controllability problem              | 14  | 4 |
|------|---------------------------------------------------------------------|-----|---|
| 1.4  | Dual problem                                                        | 1:  | 5 |
| 1.5  | Direct solution to the dual problem                                 | 1′  | 7 |
| 1.6  | Penalty arguments                                                   | 19  | 9 |
| 1.7  | $L^{\infty}$ cost functions and bang-bang controls                  | 22  | 2 |
| 1.8  | Numerical methods                                                   | 23  | 8 |
| 1.9  | Relaxation of controllability                                       | 5   | 7 |
| 1.10 | Pointwise control                                                   | 62  | 2 |
| 1.11 | Further remarks (I): Additional constraints on the state function   | 9   | 6 |
| 1.12 | Further remarks (II): A bisection based memory saving method for    |     |   |
|      | the solution of time dependent control problems by adjoint equation |     |   |
|      | based methodologies                                                 | 112 | 2 |
| 1.13 | Further remarks (III): A brief introduction to Riccati equations    |     |   |
|      | based control methods                                               | 11  | 7 |

| Contents |
|----------|
|----------|

124

|   | 2.1         | Dirichlet control (I): Formulation of the control problem           | 124   |
|---|-------------|---------------------------------------------------------------------|-------|
|   | 2.2         | Dirichlet control (II): Optimality conditions and dual formulations | 126   |
|   | 2.3         | Dirichlet control (III): Iterative solution of the control problems | 128   |
|   | 2.4         | Dirichlet control (IV): Approximation of the control problems       | 133   |
|   | 2.5         | Dirichlet control (V): Iterative solution of the fully discrete     |       |
|   |             | dual problem (2.124)                                                | 143   |
|   | 2.6         | Dirichlet control (VI): Numerical experiments                       | 146   |
|   | 2.7         | Neumann control (I): Formulation of the control problems            |       |
|   |             | and synopsis                                                        | 155   |
|   | 2.8         | Neumann control (II): Optimality conditions and dual formulations   | 163   |
|   | 2.9         | Neumann control (III): Conjugate gradient solution of the           |       |
|   |             | dual problem (2.192)                                                | 176   |
|   | 2.10        | Neumann control (IV): Iterative solution of the                     |       |
|   |             | dual problem (2.208), (2.209)                                       | 178   |
|   | 2.11        | Neumann control of unstable parabolic systems:                      |       |
|   |             | a numerical approach                                                | 178   |
|   | 2.12        | Closed-loop Neumann control of unstable parabolic systems           |       |
|   |             | via the Riccati equation approach                                   | 223   |
|   |             |                                                                     |       |
| 3 | Cont        | trol of the Stokes system                                           | 231   |
|   | 3.1         | Generalities. Synopsis                                              | 231   |
|   | 3.2         | Formulation of the Stokes system. A fundamental                     |       |
|   |             | controllability result                                              | 231   |
|   | 3.3         | Two approximate controllability problems                            | 234   |
|   | 3.4         | Optimality conditions and dual problems                             | 234   |
|   | 3.5         | Iterative solution of the control problem (3.19)                    | 236   |
|   | 3.6         | Time discretization of the control problem (3.19)                   | 238   |
|   | 3.7         | Numerical experiments                                               | 239   |
|   |             |                                                                     |       |
| 4 | Cont        | trol of nonlinear diffusion systems                                 | 243   |
| - | <b>4</b> .1 | Generalities. Synopsis                                              | 243   |
|   | 4.2         | Example of a noncontrollable nonlinear system                       | 243   |
|   | 4.3         | Pointwise control of the viscous Burgers equation                   | 245   |
|   | 4.4         | On the controllability and the stabilization of the                 | 273   |
|   | 4.4         | Kuramoto-Sivashinsky equation in one space dimension                | 259   |
|   |             | Kuramoto-Stvashinský equation in one space unitension               | 239   |
| 5 | Dvn         | amic programming for linear diffusion equations                     | 277   |
| 2 | 5.1         | Introduction. Synopsis                                              | 277   |
|   | 5.2         | Derivation of the Hamilton–Jacobi–Bellman equation                  | 278   |
|   | 5.3         | Some remarks                                                        | 279   |
|   | 0.0         |                                                                     | _ / > |

2 Boundary control

此为试读,需要完整PDF请访问: www.ertongbook.com

# Part II Wave Models

| 6 | Wav  | e equations                                                         | 283 |
|---|------|---------------------------------------------------------------------|-----|
|   | 6.1  | Wave equations: Dirichlet boundary control                          | 283 |
|   | 6.2  | Approximate controllability                                         | 285 |
|   | 6.3  | Formulation of the approximate controllability problem              | 286 |
|   | 6.4  | Dual problems                                                       | 287 |
|   | 6.5  | Direct solution of the dual problem                                 | 288 |
|   | 6.6  | Exact controllability and new functional spaces                     | 289 |
|   | 6.7  | On the structure of space $E$                                       | 291 |
|   | 6.8  | Numerical methods for the Dirichlet boundary controllability of the |     |
|   |      | wave equation                                                       | 291 |
|   | 6.9  | Experimental validation of the filtering procedure of Section 6.8.7 |     |
|   |      | via the solution of the test problem of Section 6.8.5               | 315 |
|   | 6.10 | Some references on alternative approximation methods                | 319 |
|   | 6.11 | Other boundary controls                                             | 320 |
|   | 6.12 | Distributed controls for wave equations                             | 328 |
|   | 6.13 | Dynamic programming                                                 | 329 |
|   |      |                                                                     |     |
| 7 | On t | he application of controllability methods to the solution of the    |     |
|   |      | chaltz equation at large wave numbers                               | 222 |

|   | Heln | nholtz equation at large wave numbers                                                             | 332 |
|---|------|---------------------------------------------------------------------------------------------------|-----|
|   | 7.1  | Introduction                                                                                      | 332 |
|   | 7.2  | The Helmholtz equation and its equivalent wave problem                                            | 332 |
|   | 7.3  | Exact controllability methods for the calculation of time-periodic solutions to the wave equation | 334 |
|   | 7.4  | Least-squares formulation of the problem (7.8)–(7.11)                                             | 334 |
|   | 7.5  | Calculation of $J'$                                                                               | 336 |
|   | 7.6  | Conjugate gradient solution of the least-squares problem (7.14)                                   | 337 |
|   | 7.7  | A finite element-finite difference implementation                                                 | 340 |
|   | 7.8  | Numerical experiments                                                                             | 341 |
|   | 7.9  | Further comments. Description of a mixed formulation                                              |     |
|   |      | based variant of the controllability method                                                       | 349 |
|   | 7.10 | A final comment                                                                                   | 355 |
|   |      |                                                                                                   |     |
| 8 | Othe | er wave and vibration problems. Coupled systems                                                   | 356 |
|   | 8 1  | Generalities and further references                                                               | 356 |

| 0.1 | Generalities and further references                   | 550 |
|-----|-------------------------------------------------------|-----|
| 8.2 | Coupled Systems (I): a problem from thermo-elasticity | 359 |
| 8.3 | Coupled systems (II): Other systems                   | 367 |

|  | Part | ш | Flow | Control |
|--|------|---|------|---------|
|--|------|---|------|---------|

| 9   | Optimal control of systems modelled by the Navier–Stokes equations: |                                                           |     |  |
|-----|---------------------------------------------------------------------|-----------------------------------------------------------|-----|--|
|     |                                                                     | lication to drag reduction                                | 371 |  |
|     | 9.1                                                                 | Introduction. Synopsis                                    | 371 |  |
|     | 9.2                                                                 | Formulation of the control problem                        | 373 |  |
|     | 9.3                                                                 | Time discretization of the control problem                | 377 |  |
|     | 9.4                                                                 | Full discretization of the control problem                | 379 |  |
|     | 9.5                                                                 | Gradient calculation                                      | 384 |  |
|     | 9.6                                                                 | A BFGS algorithm for solving the discrete control problem | 388 |  |
|     | 9.7                                                                 | Validation of the flow simulator                          | 389 |  |
|     | 9.8                                                                 | Active control by rotation                                | 394 |  |
|     | 9.9                                                                 | Active control by blowing and suction                     | 408 |  |
|     | 9.10                                                                | Further comments on flow control and conclusion           | 419 |  |
|     |                                                                     |                                                           |     |  |
| Ep  | ilogue                                                              |                                                           | 426 |  |
| Fu  | Further Acknowledgements                                            |                                                           |     |  |
| Re  | References                                                          |                                                           |     |  |
| Inc | Index of names                                                      |                                                           |     |  |
| Inc | lex of                                                              | subjects                                                  | 454 |  |
|     |                                                                     |                                                           |     |  |

Х

#### I.1 What it is all about?

We consider a system whose *state* is given by the solution y to a partial differential equation (PDE) of evolution, and which contains *control functions*, denoted by v.

Let us write all that in a formal fashion for the time being. The *state equation* is written as

$$\frac{\partial y}{\partial t} + \mathcal{A}(y) = \mathcal{B}v, \tag{I.1}$$

where *y* is a scalar- or vector-valued function.

In (I.1),  $\mathcal{A}$  is a set of partial differential operators (PDOs), linear or nonlinear (at least for the time being). In (I.1), v denotes the *control* and  $\mathcal{B}$  maps the "space of controls" into the "state space". It goes without saying that all this has to be made more precise. This will be the task of the following sections.

The PDE (I.1) should include *boundary conditions*. We do not make them explicit here. They are supposed to be contained in the abstract formulation (I.1), where vcan be either applied *inside* the domain  $\Omega \subset \mathbb{R}^d$ , where (I.1) is considered (v is then a *distributed* control), or on the boundary  $\Gamma$  of  $\Omega$  – or on a part of it (v is then a *boundary* control). If v is applied at points of  $\Omega$ , v is said to be a *pointwise* control.

One has to add also *initial conditions* to (I.1): if we assume that t = 0 is the initial time, then these initial conditions are given by

$$y|_{t=0} = y_0, (I.2)$$

with  $y_0$  being a given element of the state space.

It will be assumed that, given v (in a suitable space), problem (I.1)–(I.2) (and the boundary conditions included in the formulation (I.1)) *uniquely defines a solution*. This solution is a function (scalar- or vector-valued) of  $x \in \Omega$ , t > 0, and of  $y_0$  and v. We shall denote this solution by  $y(v) (= \{x, t\} \rightarrow y(x, t; v))$ . Similarly, we shall denote by y(t; v) the function  $x \rightarrow y(x, t; v)$ . Then, the initial condition (I.2) can be written as

$$y(0;v) = y_0.$$
 (I.2\*)

#### Introduction

**Remark I.1** The notions to be introduced below can be generalized to situations where the *uniqueness* of the solution to problem (I.1)–(I.2) is *not known*. We are thinking here of the Navier–Stokes equations (and related models) when the flow region  $\Omega$  is a subset of  $\mathbb{R}^3$  (and the *Reynolds number* is sufficiently large).

We can now introduce the notion of *controllability*, either *exact* or *approximate*.

Let T > 0 be given and let  $y_T$  (the *target* function) be a given element of the state space. We want to "drive the system" from  $y_0$  at t = 0 to  $y_T$  at t = T, that is, we want to find v such that

$$y(T;v) = y_T. \tag{I.3}$$

If this is possible for *any* target function  $y_T$  in the state space, one can say that the system is *controllable* (or *exactly controllable*). If – as we shall see in most of the examples – condition (I.3) is too strict, it is natural to replace it by the less demanding one

$$y(T; v)$$
 belongs to a "small" neighborhood of  $y_T$ . (I.4)

If this is possible, one says that the system is *approximately controllable*; otherwise, the system is *not controllable*.

Before giving precise examples, we want to say a few words concerning the motivation for studying these controllability problems.

#### I.2 Motivation

There are several aspects that make controllability problems important in practice.

Aspect #1 At a *given time-horizon*, we want the system under study to behave *exactly* as we wish (or in a manner arbitrary close to it).

Problems of this type are common in Science and Engineering: we would like, for example, to have the temperature (or pressure) of a system equal, or very close, to a given value – globally or locally – at a given time. *Chemical Engineering* is an important source of such problems, a typical example in that direction being the design of *car catalytic converters*; in this example chemical reactions have to take place leading to the "destruction" at a given time-horizon (very small in practice) of the polluting chemicals contained in the exhaust gases (the modeling and numerical simulation of catalytic converter systems are discussed in, for example, Engquist, Gustafsson, and Vreeburg (1978), Friedman (1988, Chapter 7), and Friend (1993)).

**Aspect # 2** For *linear* systems, it is known (cf. Russel (1978)) that exact controllability is equivalent to the possibility of *stabilizing* the system.

*Stabilization problems* abound, in particular in (large) composite structures – the so-called "multibody" systems made of many different parts which can be considered

as three-, two-, or one-dimensional and which are linked together by *junctions* and *joints*. The modeling and analysis of such systems are the subject of many interesting studies. We want to mention here the contributions of P.G. Ciarlet and his collaborators (see, for example, Ciarlet, Le Dret, and Nzengwa, 1989, Ciarlet, 1990a,b), and those of Sanchez-Hubert and Sanchez-Palencia (1989), Lagnese, Leugering, and Schmidt (1992, 1994), J. Simo and his collaborators (see, for example, Laursen and Simo, 1993), Park and his collaborators (see, for example, Park, Chiou, and Downer, 1990 and Downer, Park, and Chiou, 1992).

Studying *controllability* is *one* approach to *stabilization* as shown in, for example, J.L. Lions (1988a).

Aspect #3 (On *controllability* and *reversibility*): Suppose we have a system that *was* in a state  $z_1$  at time  $t = -t_0$ ,  $t_0 > 0$ , and that is *now* (that is, at t = 0) in the state  $y_0$ .

We would like to have the system *returning* to a state as close as possible to  $z_1$ , that is,  $y_T = z_1$ . If this is possible, it means some kind of "reversibility" property for the system under consideration. What we have in mind here are *environmental systems*; should they be "local" or "global" in the space variables?

*Noncontrollable* (sub)systems can suffer "irreversible" changes (cf. J.L. Lions, 1990 and Diaz, 1991).

We return now to the general questions of Section I.1, making them more precise before giving examples.

#### I.3 Topologies and numerical methods

The topology of the state space appears explicitly in condition (I.4). It is obvious that approximate controllability depends on the choice of the topology on the state space, that is, of the state space itself. Actually, exact controllability depends on the choice of the state space as well. The choice of the state space is therefore an obviously fundamental issue for the theory. We want to emphasize that it is also a fundamental issue from the numerical point of view. Indeed, if one has (as we shall see in several situations) exact or approximate controllability in a very general space (which can include elements that are not distributions but "ultra-distributions") but not in a classical space of smooth (or sufficiently smooth) functions, then the numerical approximation will necessarily develop singularities; "remedies" should be based on the knowledge of the topology where the theoretical convergence is taking place. We shall return on these issues in the following sections; actually, some of them have been addressed in, for example, Dean, Glowinski, and Li (1989), Glowinski and Li (1990), Glowinski, Li, and Lions (1990), Glowinski (1992a), where various filtering techniques are discussed in order to eliminate the numerical singularities mentioned above.

In the next section we shall address the following question (of general nature also), namely,

How to choose the control?

#### Introduction

# I.4 Choice of the control

Let us return to the general formulation (I.1), (I.2), (I.3), (or (I.4)). If there exists, *one* control v achieving these conditions, then there exist, in general, *infinitely many other* controls, vs, also achieving these conditions. Which one should we choose and how?

A most important question is: how to *norm* (we are always working in Banach or Hilbert spaces) the vs? This is related to the *topology* of the state space. It is indeed clear that the regularity (or irregularity!) properties of v and y in (I.1) are related. Let us assume that a norm  $v \mapsto ||v|||$  is chosen. Once this choice is made, a natural formulation of the problem is then to find

$$\inf \|v\|, \tag{I.5}$$

among all those vs such that (I.1), (I.2), (I.3), or (I.4) take place.

**Remark I.2** There is still some flexibility here since problem (0.5) still makes sense if one replaces  $\|\cdot\|$  by a *stronger* norm. This remark will be of practical interest as we shall see later on.

**Remark I.3** One can encounter questions of controllability for systems depending on "small" parameters. Two classical (by now) examples are

- (i) Singular perturbations.
- (ii) *Homogenization* which is important for the controllability of structures made of *composite materials*.

In these situations one has to introduce either *families* of norms in (I.5) or norms *equivalent* to  $\|\cdot\|$ , but which depend on the homogenization parameter.

#### I.5 Relaxation of the controllability notion

Let us return again to (I.1) and (I.2):

Condition (I.3) concerns the state *y* itself. In a "complex system" this condition can be (and will be in general) unnecessarily strong. We may want some *subsystems* to behave according to our wishes. We may also want some *average* values to behave accordingly, and so on. A general formulation is as follows:

We consider an operator

$$C \in \mathcal{L}(Y, \mathcal{H}), \tag{I.6}$$

where Y is the state space (chosen!) and where  $\mathcal{H}$  is another Banach or Hilbert space (the *observation* space). Think, for instance, of C as being an *averaging* operator. Then, we "relax" condition (I.3) (respectively (I.4)) as follows:

$$C_{Y}(T; v) = h_{T}, \quad h_{T} \text{ given in } \mathcal{H}$$
 (I.7)

此为试读,需要完整PDF请访问: www.ertongbook.com