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Preface

This book is the new design course that we have developed on several campuses
during the past five years. The approach is new because it is based on constructal
theory—the view that flow configuration (geometry, design) can be reasoned on
the basis of a principle of configuration generation and evolution in time toward
greater global flow access in systems that are free to morph. The generation of flow
configuration is viewed as a physics phenomenon, and the principle that sums up
its universal occurrence in nature (the constructal law, p. 2) is deterministic.

Constructal theory provides a broad coverage of “designedness” everywhere,
from engineering to geophysics and biology. To see the generality of the method,
consider the following metaphor, which we use in the introductory segment of the
course. Imagine the formation of a river drainage basin, which has the function
of providing flow access from an area (the plain) to one point (the river mouth).
The constructal law calls for configurations with successively smaller global flow
resistances in time. The invocation of this law leads to a balancing of all the internal
flow resistance, from the seepage along the hill slopes to the flow along all the
channels. Resistances (imperfection) cannot be eliminated. They can be matched
neighbor to neighbor, and distributed so that their global effect is minimal, and the
whole basin is the least imperfect that it can be. The river basin morphs and tends
toward an equilibrium flow-access configuration.

The visible and valuable product of this way of thinking is the configuration:
the river basin, the lung, the tree of cooling channels in an electronics package,
and so on. The configuration is the big unknown in design: the constructal law
draws attention to it as the unknown and guides our thoughts in the direction of
discovering it.

In the river basin example, the configuration that the constructal law uncovers
is a tree-shaped flow, with balances between highly dissimilar flow resistances
such as seepage (Darcy flow) and river channel flow. The tree-shaped flow is the
theoretical way of providing effective flow access between one point (source, sink)
and an infinity of points (area, volume). The tree is a complex flow structure, which
has multiple-length scales that are distributed nonuniformly over the available area
or volume.

All these features, the tree shape and the multiple scales, are found in any other
flow system whose purpose is to provide access between one point and an area or
volume. Think of the trees of electronics, vascularized tissues, and city traffic, and
you will get a sense of the universality of the principle that was used to generate
and to discover the tree configuration.
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xiv  Preface

Vascularized is a good name for the complex energy systems that the new ther-
mal sciences is covering. Vascularized is everything, the animate, the inanimate,
and the engineered, from the muscle and the river basin to the cooling of high-
density electronics. The tissues of energy flows, like the fabric of society and all the
tissues of biology, are designed (patterned, purposeful) architectures. The climbing
to this high level of performance is the transdisciplinary effort: the balance between
seemingly unrelated flows, territories, and disciplines. This balancing act—the op-
timal distribution of imperfection—generates the very design of the process, power
plant, city, geography, and economics.

Trees are not the only class of configurations that result from invoking the
constructal law. Straight tubes with round cross-sections are discovered when one
favors the access for fluid flow between two points. Round tubes are found in many
natural and engineered flow systems (blood vessels, subterranean rivers, volcanic
shafts, piping, etc.). Optimal spacings between solid components are discovered
by invoking the constructal law. Examples are the spacings between fins in heat
exchangers and the spacings between heat-generating electronics in a package.
Optimal intermittence (thythm) is discovered in the same way, and, once again, the
examples unite nature with engineering, from human respiration (in- and outflow),
to the periodic shutdown and cleaning of heat exchangers in power plants.

Loops and grid-shaped flow patterns are useful because they add resilience and
robustness to the tree-shaped flow configurations that they serve. Robustness and
redundancy are precious properties in design, and our course teaches how to endow
designs with such properties.

In summary, this design course provides the student with strategy for how to
pursue and discover design (configuration, pattern) in both space and time. Con-
structal theory pushes design thinking closer to science and away from art. It tears
down the walls between engineering and natural sciences. Because the design (the
configuration generation phenomenon) has scientific principles that are now be-
coming known, it is possible to learn where to expect opportunities for discovering
new configurations that are stepwise more effective. How to pursue the discovery
with less effort and time (i.e., with strategy) is another merit of learning design
generation as a scientific subject.

At the end of the day, this new design as science paradigm makes a solid con-
tribution to physics, to predicting nature. The drawings made in this book are
qualitatively the same as those of natural porous and vascularized materials. Most
valuable are the similarities that emerge between natural structures and the ones
derived here based on principle. They shed light on the natural tendency that gen-
erates multiple scales, hierarchy, complexity, and heterogeneity in flow systems
such as hill slope drainage, forests, and living tissues. The fact that natural flow
structures—the champions of flow perfection—have features similar to those dis-
covered in constructal design lends confidence in the pursuit of better engineering
design with constructal theory.
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a,b aspect ratios, Eq. (10.118)
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AR aspect ratio, Table 1.1
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By, B; global thermal resistances, Egs. (5.22) and (5.50)
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Be Bejan number, Egs. (3.35) and (8.35)
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c,C constants

C pump work requirement, J, Eq. (1.33)

C thermal conductance, Eq. (6.16)

Cp drag coefficient, Eq. (1.37)

Cy skin friction coefficient

COP coefficient of performance, Egs. (2.18)—(2.19)
d depth, smallest dimension, m

D diameter, spacing, m

D effective diffusion coefficient, m?/s

Dy, hydraulic diameter, m, Eq. (1.21)

E energy, J

E modulus of elasticity, Pa

f flow resistance, dimensionless, Eq. (4.57)
f friction factor, Eq. (1.16)

f ratio, Eq. (6.59)

L F function

fl strength of concrete

fs strength of steel

F Faraday constant, 9 648 J/V mol

F force, N
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h heat transfer coefficient, W/mK, Eq. (1.56)
h specific enthalpy, J/kg
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local-loss coefficient, Eq. (1.31)
permeability, m?
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mean free path, m
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mass flow rate, kg/s
dimensionless mass flow rate, Egs. (7.14) and (7.38)
moment, Nm
number
number of heat loss units, Eq. (7.100)
Nusselt number, Eq. (1.60)
number of pairing (or bifurcation) levels
porosity
wetted perimeter, m
force, N
pressure, Pa
dimensionless pressure drop, Eq. (7.49); see also Be, Eq. (3.35)
Poiseuille constant, Eq. (1.23)
Prandtl number, Eq. (1.60)
heat current, W
Q' heat current per unit length W/m
heat flux, W/m?
volumetric heat generation rate, W/m3
heat transfer, J
volumetric fluid flow rate, m>/s
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heat transfer rate, W
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ideal gas constant, J/kg - K
resistance

universal gas constant, 8.314 J/K mol
Rayleigh number based on y, Eq. (1.76)
Reynolds number based on D, Eq. (1.14)
thermal resistance, K/W, Eq. (1.40)
specific entropy, J/kg - K

stress, Pa

entropy, J/K

spacing, m

sum

surface, m

Schmidt number, v/D

entropy generation, J/K

Stanton number, Eq. (1.70)
Svelteness number, Eq. (1.1)
thickness, m

time, s

temperature, K

velocity components, m/s

average longitudinal velocity, m/s
overall heat transfer coefficient, W/m2K
potential, V

specific volume, m?/kg

velocity, m/s

volume, m3

width, m

work, J

power, W

power per unit length, W/m
Cartesian coordinates, m

flow entrance length, m

thermal entrance length, m

charge number

thickness, m

angles, rad

thermal diffusivity, m?/s

coefficient of volumetric thermal expansion, K™
ratio, Eq. (8.41)

deflection, m
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) thickness, m

AP pressure difference, Pa

AT temperature difference, K

£ effectiveness, Eq. (7.75)

£ small quantity

fin efficiency, Eq. (1.44)

first-law efficiency, Eq. (2.15)
second-law efficiency, Eq. (2.16)
angle, rad

dimensionless temperature difference, Eq. (7.123)
temperature difference, K

critical length scale, m

Lagrange multiplier

thickness, m

viscosity, kg/s m

kinematic viscosity, m?/s

radius of curvature, m

density, kg/m?

stress, Pa

shear stress, Pa

aspect ratio, Eq. (4.44)

pressure loss, Eq. (1.32)

volume fraction, porosity; see also p
electrical potential, V

dimensionless global flow resistance, Eq. (8.51)
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min

NC

00
000

opt
out

e~ Tas T

ref

gt E ENT T v g

exposed

fluid, frontal
forced convection
ground

high

inner, species, rank
inlet

low

log-mean
maximum

mean

melting

minimized
maximum allowable
minimized twice
minimized three times
maximum
minimum

north

nozzle

natural convection
optimized
optimized twice
optimized three times
outer

optimum

outlet

path

pipes

pump

radial

reference
reversible

sector, solid, steel
south

thermal

trunk

turbine

west

wall

longitudinal

total, summed

free stream, far field
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nano-size
optimized
averaged
dimensionless
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