### SOCIETÀ ITALIANA DI FISICA

PROCEEDINGS
OF THE
INTERNATIONAL SCHOOL OF PHYSICS
"ENRICO PERMI"

COURSE CXLIV

# Nanometer Scale Science and Technology



SOCIETÀ ITALIANA DI FISICA BOLOGNA-ITALY

p 578.2

#### ITALIAN PHYSICAL SOCIETY

#### **PROCEEDINGS**

OF THE

#### INTERNATIONAL SCHOOL OF PHYSICS

"ENRICO FERMI"

## COURSE CXLIV

edited by M. Allegrini, N. García and O. Marti

Directors of the Course

#### VARENNA ON LAKE COMO

VILLA MONASTERO

27 June - 7 July 2000



# $egin{aligned} Nanometer\ Scale\ Science\ and\ Technology \end{aligned}$





AMSTERDAM, OXFORD, TOKYO, WASHINGTON DC

#### Copyright © 2001 by Società Italiana di Fisica

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN 1 58603 165 1 (IOS Press) ISBN 4 274 90458X C3042 (Ohmsha) Library of Congress Catalog Card Number: 2001090873

Production Manager
A. OLEANDRI

Copy Editor
M. Missiroli

Publisher
IOS PRESS
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
fax: +31 20 688 33 55
e-mail: order@iopress.nl

Distributor in the UK and Ireland IOS Press/Lavis Marketing 73 Lime Walk Headington Oxford OX3 7AD England

fax: +44 1865 75 0079

fax: +49 341 995 4255

Distributor in the USA and Canada IOS Press, Inc. 5795-G Burke Center Parkway Burke, VA 22015 USA fax: +1 703 323 3668

e-mail: iosbooks@iospress.com

Distributor in Germany, Austria and Switzerland IOS Press/LSL.de Gerichtsweg 28 D-04103 Leipzig Germany Distributor in Japan Ohmsha, Ltd. 3-1 Kanda Nishiki-cho Chiyoda-ku, Tokio 101 Japan

fax:  $+81\ 3\ 3233\ 2426$ 

Proprietà Letteraria Riservata Printed in Italy

#### SOCIETÀ ITALIANA DI FISICA

#### RENDICONTI

DELLA

#### SCUOLA INTERNAZIONALE DI FISICA

"ENRICO FERMI"

## CXLIV Corso

a cura di M. Allegrini, N. García and O. Marti

Direttori del Corso

VARENNA SUL LAGO DI COMO

VILLA MONASTERO

27 Giugno - 7 Luglio 2000

# $Scienza\ e\ tecnologia\ a\ scala\ nanometrica$

2001



SOCIETÀ ITALIANA DI FISICA BOLOGNA-ITALY

Supported by the European Commission, Research DG, Human Potential Programme, High-Level Scientific Conferences HPCF-CT-1999-00094

Supported by UNESCO VENICE OFFICE (UVO-ROSTE)

Supported by the European Commission, DGXII Research and Development, Training and Mobility of Researchers Programme: Network "Near Field Optics for Nanotechnology" (NanoSNOM), ERBFMRX-CT-98-0242

Supported by European Office of Naval Research (ONRIFO)

Supported by Swiss National Science Foundation

Supported by Gruppo Nazionale di Struttura della Materia (GNSM-CNR)

此为试读,需要完整PDF请访问: www.ertongbook.com

#### **Preface**

The many wonders of nanophysics were first anticipated by Richard Feynman in a speech he gave in late 1959, subsequently published under the title "There's Plenty of Room at the Bottom". Feynman was able to grasp the new physics at the atomic or nanometer scale, which has arrived at the verge of fruition today in many areas from information technology and medicine to manufacturing and the environment. Nanophysics is not synonimous with nanotechnology, but it depends heavily on the nanotechnologies required to produce, to investigate and to manipulate single atoms and molecules and other nanostructures. Nanophysics, however, goes one step further than nanotechnology because it also requires a profound understanding of the magical world on the length scales where the smallest of human-made devices and the large molecules of living systems meet.

The CXLIV Course of the Enrico Fermi School, held in Varenna at the beautifully renovated Villa Monastero from June 27 to July 7, 2000, focuses on "Nanometer Scale Science and Technology". This is one of the most rapidly expanding research fields and it is considered one of the most important issues in forming future societies. Nanoscience and nanotechnology are at the interface between physics, chemistry, engineering and, most importantly, biology. The most fundamental processes of living matter occur on the nanometer scale. Micro-electrical mechanical systems are approaching the dimensions of biological cells, opening up the possibility of connecting machines to individual cells. This Course, the first in this field at the Enrico Fermi School, successfully attempted to convey to students the flavour of "the magic of the small". In physics it is the domain of the interface between condensed matter and atoms and molecules. Given the highly interdisciplinary character of this advanced research, we have been forced to select a few topics among a large variety. The Course was based on local probes (STM, AFM, SNOM) and related supreme technological achievements. These topics were extensively covered in a set of lectures and seminars, mainly devoted to instrumentation aspects. From a more fundamental point of view it also covers advanced subjects such as clusters, nanocontacts, photonic band gap materials, atom manipulation by light, atom optics with Bose-Einstein XVI Preface

condensates and quantum computing. The information industry has been driving the field of nanotechnology, whose top issues are tolerance, interfaces, intensities and peripherals. Tolerance means that true nanoscale devices should be designed to assure operation even if their dimensions on an energy scale are spread considerably. Intensities describe the fact that even though extensive quantities such as length, number of particles and currents become small, intensities remain large or become even larger. Power densities, not light intensity and electric fields may become the limiting values. Peripherals finally address the fact that nanoscale objects are hard to interface to the macroworld. One example, discussed at this School, are nanotubes. Currently, the problem of how to make electrical contacts is one of the most prominent open questions. One consequence of these four issues is that nano-objects and nanodevices should have an optimal size.

One impressive fact of this Course was that all leading researchers were leaving their original discipline and have started to work at the interfaces of physics, chemistry, biology and engineering. The lectures addressed both fundamental subjects as well as instrumental issues. A fascinating overview of the basics of quantum computing was given in four lectures. Optical properties of nanoscale objects were covered extensively, and in one seminar it was concisely shown how periodic arrays of these particles lead to photonic band gap materials. Key examples of the fabrication of nanostructures were given. Electrical properties are some of the most sought after capabilities in the microworld: ballistic magnetoresistance, nanoscale electronics and nanotubes were some of the examples presented. Two sets of lectures were devoted to showing how to bridge physics and chemistry to biology, leading to the final lectures on the nanoscience of living matter.

All through the lectures it was very clear that nanotechnology would be the future of further technological development, but that it is also a multidisciplinary technology that more than ever requires basic scientific developments for its advancement. It could be said that nanotechnology and nanoscience, the new scientific developments on the nanoscale, are simply inseparable. Also future developments as well as those of the present, necessitate a close collaboration of physicists, chemists, biologists and mathematicians.

In the discussions it was also pointed out that developments in nanotechnology in the near future will be based on the CMOS techniques that so successfully have been fuelling the micro- and submicron technology. Nanodevices will have to be compatible with the existing CMOS technology, otherwise it will be virtually impossible to introduce them into today's markets. This seems to be the opinion of the more application-oriented participants. However, there were others who think that we should learn to "imitate" Nature and its self-replicating mechanism in order to create not only memory but also operating and functional memories. The attitude of nanotechnology so far has been to reduce the size of chips and devices, which have permitted an increase in memory and compactness, but this is not enough if we really want to open up new avenues for the future. The ideas that will constitute a break-through are still to come.

In addition to the lectures and seminars, a Round Table was organized by N. García, following the opening talks of H. Rohrer who brought to the minds of all participants that science and technology cannot be discussed ignoring ethical and social consequences.

Preface XVII

Lively discussions among the participants deepened the awareness of the problem.

The success of this Course on Nanometer Scale Science and Technology was made possible firstly by all the participants, speakers, young students and senior observers, and secondly by the cooperation of many persons and institutions. We wish to thank all lecturers to whom the largest part of the credit must be given and the numerous students, from seventeen different countries all over the world, who interacted constantly and very intensively. A special thought of gratitude is due to Prof. G. F. BASSANI, the President of the Italian Physical Society, who has supported our initiative with enthusiasm and knowledge from the early stages of application to the very end of the Course. Special thanks are due to Dr. M. LABARDI for his dedicated work as secretary of the Course. We wish to thank Dr. I. VODYANOY of the Office of Naval Research who followed the entire Course and contributed with lively scientific discussions as well as with a special seminar on "Funding from the US: ONRIFO International Program". Thanks also to Dr. R. COMPAÑÓ and Dr. N. DELIYANAKIS of the European Commission who paid a short but intense visit to our school and brought the news about the great efforts that the European Commission is making in the field of nanotechnology. B. ALZANI and C. VASINI from the staff of the Italian Physical Society were marvellous in solving the logistic problems, on which the directors had no influence. R. BRIGATTI, F. SABADINI and S. REICHARD efficiently and cheerfully helped in a smooth running of the Course. Our thanks to all of them.

We acknowledge the generous support by the Italian Physical Society (SIF), the European Commission through its Euroconferences and Euroschools programme and the TMR Network NanoSNOM, the European Office of Naval Research (ONRIFO), the UNESCO, the Swiss National Science Foundation and the Gruppo Nazionale di Struttura della Materia of the Italian National Research Council (GNSM-CNR).

M. ALLEGRINI, N. GARCÍA and O. MARTI



Società Italiana di Fisica SCUOLA INTERNAZIONALE DI FISICA «E. FERMI» CXLIV CORSO - VARENNA SUL LAGO DI COMO VILLA MONASTERO 27 Giugno - 7 Luglio 2000



# PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS «ENRICO FERMI»

Course I (1953)

Questioni relative alla rivelazione delle
particelle elementari, con particolare riguardo alla radiazione cosmica
edited by G. Puppi

Course II (1954)

Questioni relative alla rivelazione delle
particelle elementari, e alle loro interazioni con particolare riguardo alle particelle
artificialmente prodotte ed accelerate
edited by G. Puppi

Course III (1955)

Questioni di struttura nucleare e dei processi nucleari alle basse energie
edited by C. Salvetti

Course IV (1956)

Proprietà magnetiche della materia
edited by L. GIULOTTO

Course V (1957)

Fisica dello stato solido
edited by F. Fumi

Course VI (1958)

Fisica del plasma e relative applicazioni
astrofisiche
edited by G. RIGHINI

Course VII (1958)

Teoria della informazione
edited by E. R. CAIANIELLO

Course VIII (1958)

Problemi matematici della teoria quantistica delle particelle e dei campi
edited by A. Borsellino

Course IX (1958)

Fisica dei pioni
edited by B. Touschek

Course X (1959)

Thermodynamics of Irreversible Processes
edited by S. R. DE GROOT

Course XI (1959)

Weak Interactions
edited by L. A. RADICATI

Course XII (1959)

Solar Radioastronomy
edited by G. RIGHINI

Course XIII (1959)

Physics of Plasma: Experiments and Techniques
edited by H. Alfvén

Course XIV (1960)

Ergodic Theories

edited by P. CALDIROLA

Course XV (1960)

Nuclear Spectroscopy
edited by G. RACAH

Course XVI (1960)

Physicomathematical Aspects of Biology
edited by N. Rashevsky

Course XVII (1960)

Topics of Radiofrequency Spectroscopy
edited by A. GOZZINI

Course XVIII (1960)

Physics of Solids (Radiation Damage in Solids)
edited by D. S. BILLINGTON

Course XIX (1961)

Cosmic Rays, Solar Particles and Space
Research
edited by B. Peters

Course XX (1961)

Evidence for Gravitational Theories
edited by C. Møller

Course XXI (1961)

Liquid Helium

edited by G. CARERI

Course XXII (1961)

Semiconductors

edited by R. A. SMITH

Course XXIII (1961)

Nuclear Physics

edited by V. F. Weisskopf

Course XXIV (1962)

Space Exploration and the Solar

System

edited by B. Rossi

Course XXV (1962)

Advanced Plasma Theory
edited by M. N. ROSENBLUTH

Course XXVI (1962) Selected Topics on Elementary Particle Phusics edited by M. Conversi

Course XXVII (1962) Dispersion and Absorption of Sound by Molecular Processes edited by D. Sette

Course XXVIII (1962) Star Evolution edited by L. Gratton

Course XXIX (1963) Dispersion Relations and their Connection with Causality edited by E. P. WIGNER

Course XXX (1963) Radiation Dosimetry edited by F. W. SPIERS and G. W. REED

Course XXXI (1963) Quantum Electronics and Coherent Light edited by C. H. Townes and P. A. MILES

Course XXXII (1964) Weak Interactions and High-Energy Neutrino Phusics edited by T. D. LEE

Course XXXIII (1964) Strong Interactions edited by L. W. ALVAREZ

Course XXXIV (1965) The Optical Properties of Solids edited by J. TAUC

Course XXXV (1965) High-Energy Astrophysics edited by L. Gratton

Course XXXVI (1965) Many-Body Description of Nuclear Structure and Reactions edited by C. Bloch

Course XXXVII (1966) Theory of Magnetism in Transition Metals edited by W. MARSHALL

Course XXXVIII (1966) Interaction of High-Energy Particles with Nuclei edited by T. E. O. ERICSON

Course XXXIX (1966) Plasma Astrophysics edited by P. A. STURROCK

Course XL (1967) Nuclear Structure and Nuclear Reactions edited by M. JEAN and R. A. RICCI

Course XLI (1967) Selected Topics in Particle Physics edited by J. Steinberger

Course XLII (1967) Quantum Optics edited by R. J. GLAUBER

Course XLIII (1968) Processing of Optical Data by Organisms and by Machines edited by W. REICHARDT

Course XLIV (1968) Molecular Beams and Reaction Kineedited by CH. SCHLIER

Course XLV (1968) Local Quantum Theory edited by R. Jost

Course XLVI (1969) Physics with Intersecting Storage Rings edited by B. Touschek

Course XLVII (1969) General Relativity and Cosmology edited by R. K. SACHS

Course XLVIII (1969) Physics of High Energy Density edited by P. CALDIROLA and H. KNOEPFEL

Course IL (1970) Foundations of Quantum Mechanics edited by B. D'ESPAGNAT

Course L (1970) Mantle and Core in Planetary Physics edited by J. COULOMB and M. CAPUTO

Course LI (1970) Critical Phenomena edited by M. S. GREEN

Course LII (1971) Atomic Structure and Properties of Solids edited by E. Burstein

Course LIII (1971) Developments and Borderlines of Nuclear **Physics** edited by H. MORINAGA

Course LIV (1971) Developments in High-Energy Physics edited by R. R. GATTO

Course LV (1972) Lattice Dynamics and Intermolecular Forces edited by S. Califano

Course LVI (1972) **Experimental Gravitation** edited by B. BERTOTTI

Course LVII (1972) History of 20th Century Physics edited by C. WEINER

Course LVIII (1973)

Dynamics Aspects of Surface Physics
edited by F. O. GOODMAN

Course LIX (1973)

Local Properties at Phase Transitions
edited by K. A. MÜLLER and A. RIGAMONTI

Course LX (1973)

C\*-Algebras and their Applications to

Statistical Mechanics and Quantum

Field Theory

edited by D. KASTLER

Course LXI (1974)

Atomic Structure and Mechanical Properties of Metals
edited by G. CAGLIOTI

Course LXII (1974)

Nuclear Spectroscopy and Nuclear Reactions with Heavy Ions
edited by H. FARAGGI and R. A. RICCI

Course LXIII (1974)

New Directions in Physical Acoustics
edited by D. Sette

Course LXIV (1975)

Nonlinear Spectroscopy

edited by N. Bloembergen

Course LXV (1975)

Physics and Astrophysics of Neutron Stars
and Black Holes
edited by R. GIACCONI and R. RUFFINI

Course LXVI (1975)

Health and Medical Physics
edited by J. BAARLI

Course LXVII (1976)

Isolated Gravitating Systems in General
Relativity
edited by J. EHLERS

Course LXVIII (1976)

Metrology and Fundamental Constants
edited by A. Ferro Milone, P. Giacomo
and S. Leschiutta

Course LXIX (1976)

Elementary Modes of Excitation in Nuclei
edited by A. Bohr and R. A. Broglia

Course LXX (1977)

Physics of Magnetic Garnets
edited by A. PAOLETTI

Course LXXI (1977)

Weak Interactions
edited by M. Baldo Ceolin

Course LXXII (1977)

Problems in the Foundations of Physics
edited by G. TORALDO DI FRANCIA

Course LXXIII (1978)

Early Solar System Processes and the Present Solar System edited by D. LAL

Course LXXIV (1978)

Development of High-Power Lasers and their Applications
edited by C. Pellegrini

Course LXXV (1978)

Intermolecular Spectroscopy and Dynamical Properties of Dense Systems edited by J. VAN KRANENDONK

Course LXXVI (1979)

Medical Physics

edited by J. R. Greening

Course LXXVII (1979)

Nuclear Structure and Heavy-Ion Collisions

edited by R. A. Broglia, R. A. Ricci and C. H. Dasso

Course LXXVIII (1979)

Physics of the Earth's Interior
edited by A. M. Dziewonski and E. Boschi

Course LXXIX (1980)

From Nuclei to Particles
edited by A. Molinari

Course LXXX (1980)

Topics in Ocean Physics
edited by A. R. OSBORNE and P. MALANOTTE
RIZZOLI

Course LXXXI (1980)

Theory of Fundamental Interactions
edited by G. Costa and R. R. Gatto

Course LXXXII (1981)

Mechanical and Thermal Behaviour of

Metallic Materials

edited by G. CAGLIOTI and A. FERRO MILONE

Course LXXXIII (1981)

Positrons in Solids
edited by W. Brandt and A. Dupasquier

Course LXXXIV (1981)

Data Acquisition in High-Energy Physics
edited by G. Bologna and M. Vincelli

Course LXXXV (1982)

Earhquakes: Observation, Theory and Interpretation
edited by H. Kanamori and E. Boschi

Course LXXXVI (1982)

Gamow Cosmology

edited by F. Melchiorri and R. Ruffini

Course LXXXVII (1982)

Nuclear Structure and Heavy-Ion Dynamics
edited by L. Moretto and R. A. Ricci

Course LXXXVIII (1983)

Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics
edited by M. Ghil, R. Benzi and G. Parisi

Course LXXXIX (1983)

Highlights of Condensed-Matter Theory
edited by F. Bassani, F. Fumi and M. P.
Tosi

Course XC (1983)

Physics of Amphiphiles: Micelles, Vesicles
and Microemulsions
edited by V. Degiorgio and M. Corti

Course XCI (1984)

From Nuclei to Stars

edited by A. Molinari and R. A. Ricci

Course XCII (1984)

Elementary Particles
edited by N. CABIBBO

Course XCIII (1984)

Frontiers in Physical Acoustics
edited by D. Sette

Course XCIV (1984)

Theory of Reliability
edited by A. Serra and R. E. Barlow

Course XCV (1985)

Solar-Terrestrial Relationships and the
Earth Environment in the Last Millennia
edited by G. CINI CASTAGNOLI

Course XCVI (1985)

Excited-State Spectroscopy in Solids
edited by U. M. Grassano and N. Terzi

Course XCVII (1985)

Molecular-Dynamics Simulations of Statistical-Mechanical Systems
edited by G. Ciccotti and W. G. Hoover

Course XCVIII (1985)

The Evolution of Small Bodies in the Solar System

edited by M. Fulchignoni and L. Kresàk

Course XCIX (1986)

Synergetics and Dynamic Instabilities
edited by G. CAGLIOTI and H. HAKEN

Course C (1986)

The Physics of NMR Spectroscopy in Biology and Medicine
edited by B. Maraviglia

Course CI (1986)

Evolution of Interstellar Dust and Related
Topics

edited by A. Bonetti and J. M. Greenberg

Course CII (1986)

Accelerated Life Testing and Experts
Opinions in Reliability
edited by C. A. CLAROTTI

Course CIII (1987)

Trends in Nuclear Physics
edited by P. Kienle, R. A. Ricci and A. Rubbino

Course CIV (1987)

Frontiers and Borderlines in Many-Particle Physics

edited by R. A. Broglia and J. R. Schrief-Fer

Course CV (1987)

Confrontation between Theories and Observations in Cosmology: Present Status and Future Programmes
edited by J. AUDOUZE and F. MELCHIOR-RI

Course CVI (1988)

Current Trends in the Physics of Materials
edited by G. F. Chiarotti, F. Fumi and M.
Tosi

Course CVII (1988)

The Chemical Physics of Atomic and Molecular Clusters
edited by G. Scoles

Course CVIII (1988)

Photoemission and Absorption Spectroscopy of Solids and Interfaces with Synchrotron Radiation

edited by M. Campagna and R. Rosei

Course CIX (1988)

Nonlinear Topics in Ocean Physics
edited by A. R. Osborne

Course CX (1989)

Metrology at the Frontiers of Physics and Technology
edited by L. Crovini and T. J. Quinn

Course CXI (1989)

Solid-State Astrophysics
edited by E. Bussoletti and G. Strazzulla

Course CXII (1989)

Nuclear Collisions from the Mean-Field into the Fragmentation Regime edited by C. Detraz and P. Kienle

Course CXIII (1989)

High-Pressure Equation of State: Theory
and Applications
edited by S. ELIEZER and R. A. RICCI

Course CXIV (1990)

Industrial and Technological Applications of Neutrons
edited by M. Fontana and F. Rustichelli

Course CXV (1990)

The Use of EOS for Studies of Atmospheric Physics
edited by J. C. GILLE and G. VISCONTI

Course CXVI (1990)

Status and Perspectives of Nuclear Energy: Fission and Fusion
edited by R. A. RICCI, C. SALVETTI and E. SINDONI

Course CXVII (1991)

Semiconductor Superlattices and Interfaces
edited by A. Stella

Course CXVIII (1991)

Laser Manipolation of Atoms and Ions
edited by E. Arimondo, W. D. Phillips and
F. Strumia

Course CXIX (1991)

Quantum Chaos

edited by G. Casati, I. Guarneri and U.

SMILANSKY

Course CXX (1992)

Frontiers in Laser Spectroscopy
edited by T. W. HÄNSCH and M. INGUSCIO

Course CXXI (1992)

Perspectives in Many-Particle Physics
edited by R. A. Broglia, J. R. Schrieffer and P. F. Bortignon

Course CXXII (1992)

Galaxy Formation

edited by J. Silk and N. Vittorio

Course CXXIII (1992)

Nuclear Magnetic Double Resonance
edited by B. MARAVIGLIA

Course CXXIV (1993)

Diagnostic Tools in Atmospheric Physics
edited by G. FIOCCO and G. VISCONTI

Course CXXV (1993)

Positron Spectroscopy of Solids
edited by A. Dupasquier and A. P. Mills jr.

Course CXXVI (1993)

Nonlinear Optical Materials: Principles
and Applications
edited by V. Degiorgio and C. Flytzanis

Course CXXVII (1994)

Quantum Groups and their Applications
in Physics
edited by L. CASTELLANI and J. WESS

Course CXXVIII (1994)

Biomedical Applications of Synchrotron
Radiation
edited by E. Burattini and A. Balerna

Course CXXIX (\*) (1994)

Observation, Prediction and Simulation
of Phase Transitions in Complex Fluids
edited by M. Baus, L. F. Rull and J.-P.
Ryckaert

Course CXXX (1995)

Selected Topics in Nonperturbative QCD edited by A. DI GIACOMO and D. DIAKONOV

Course CXXXI (1995)

Coherent and Collective Interactions of Particles and Radiation Beams
edited by A. ASPECT, W. BARLETTA and R. BONIFACIO

Course CXXXII (1995)

Dark matter in the Universe
edited by S. BONOMETTO and J. PRIMACK

Course CXXXIII (1996)

Past and Present Variability of the SolarTerrestrial System: Measurement, Data
Analysis and Theoretical Models
edited by G. CINI CASTAGNOLI and A. PROVENZALE

Course CXXXIV (1996)

The Physics of Complex Systems
edited by F. Mallamace and H. E. Stan-Ley

Course CXXXV (1996)

The Physics of Diamond
edited by A. Paoletti and A. Tucciarone

Course CXXXVI (1997)

Models and Phenomenology for Conventional and High-Temperature Superconductivity

edited by G. IADONISI, J. R. SCHRIEFFER and M. L. CHIOFALO

Course CXXXVII (1997)

Heavy Flavour Physics: a Probe of Nature's Grand Design
edited by I. BIGI and L. MORONI

Course CXXXVIII (1997)

Unfolding the Matter of Nuclei
edited by A. Molinari and R. A. Ricci

Course CXXXIX (1998)

Magnetic Resonance and Brain Function: Approaches from Physics
edited by B. Maraviglia

Course CXL (1998)

\*\*Bose-Einstein Condensation in Atomic Gases\*\*

edited by M. Inguscio, S. Stringari and C.

E. WIEMAN

Course CXLI (1998)

Silicon-Based Microphotonics: From Basics to Applications

edited by O. BISI, S. U. CAMPISANO, L. PAVESI and F. PRIOLO

Course CXLII (1999)

Plasma Astrophysics
edited by B. Coppi, A. Ferrari and E. Sindoni

Course CXLIII (1999)

New Directions in Quantum Chaos

edited by G. CASATI, I. GUARNERI and U.

SMILANSKY

### INDICE

| M. | Aı                              | LLEGRINI, N. GARCÍA and O. MARTI – Preface                          | pag.            | XV    |
|----|---------------------------------|---------------------------------------------------------------------|-----------------|-------|
| Gr | upp                             | oo fotografico dei partecipanti al Corso                            | <b>»</b>        | XVIII |
| Н. | Ro                              | OHRER - The magic of the small: Science and technology on the nano- |                 |       |
|    |                                 | eter scale                                                          | <b>»</b>        | 1     |
|    | 1.                              | The magic                                                           | >>              | 2     |
|    | 2.                              | The legacy                                                          | >>              | 2     |
|    | 3.                              | The nanometer scale                                                 | >>              | 3     |
|    | 4.                              | Nanotechnology, the continuation of a development                   | >>              | 4     |
|    | 5.                              | The new nanotechnology                                              | >>              | 5     |
|    | 6.                              | Back to the future of mechanics                                     | >>              | 7     |
|    | 7.                              | The prospects                                                       | >>              | 8     |
| M. | Н                               | EGNER and HJ. GÜNTHERODT – Nanometer scale science and technol-     |                 |       |
|    | ogy — The impact of STM and AFM |                                                                     | <b>&gt;&gt;</b> | 11    |
|    | 1.                              | Introduction                                                        | >>              | 11    |
|    |                                 | 1'1. Relation of NSST and SPM                                       | >>              | 11    |
|    |                                 | 1'2. The roots of NSST                                              | >>              | 12    |
|    |                                 | 1'3. The background of STM, AFM: SPM                                | >>              | 13    |
|    | 2.                              | Highlights of STM studies                                           | >>              | 14    |
|    |                                 | 2'1. Imaging                                                        | >>              | 14    |
|    |                                 | 2'2. Modification                                                   | >>              | 14    |
|    |                                 | 2'3. Atom manipulation                                              | >>              | 14    |
|    |                                 | 2'4. Studies of superconductors                                     | >>              | 14    |
|    |                                 | 25. Inelastic electron tunnelling spectroscopy                      | >>              | 14    |
|    | 3.                              | Introduction to AFM: contact mode                                   | >>              | 15    |
|    |                                 | 3'1. Imaging                                                        | >>              | 15    |
|    |                                 | 3'2. Friction Force Microscopy (FFM)                                | >>              | 17    |
|    |                                 | 3'3. Molecular recognition experiments                              | >>              | 18    |
|    | 4.                              | Noncontact AFM                                                      | <b>&gt;&gt;</b> | 19    |
|    |                                 | 41. Experiments                                                     | >>              | 19    |
|    |                                 | 4'2. Room temperature results                                       | >>              | 20    |
|    |                                 | 4'3. Low-temperature results                                        | <b>&gt;&gt;</b> | 21    |
|    |                                 | 4'4. Magnetic force microscopy                                      | >>              | 22    |
|    | 5.                              | AFM-related experiments—Nanomechanics                               | >>              | 26    |
|    |                                 | 51. Fundamentals                                                    | >>              | 26    |
|    |                                 | 5'2. Nanocalorimeter                                                | <b>»</b>        | 26    |