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PREFACE

The study of partial differential equations (PDEs) of applied mathematics involves the
formulation of problems that lead to partial differential equations, the classification
and characterization of equations and problems of different types, and the examination
of exact, approximate, and numerical methods for the solution of these problems.
Each of these aspects is considered in this book.

The widespread availability of computers in the scientific community and the ad-
vent of mathematical software such as Maple, Matlab, and Mathematica has had the
effect of eliminating the need for carrying out many routine symbolic and numerical
calculations that arise when solving PDEs manually. Furthermore, it has become
possible to create and employ fairly sophisticated numerical methods for the solution
of PDEs without having to use lengthy computer codes created by professional nu-
merical analysts. Forexample, M aple has built-in procedures or codes that can solve
both ordinary differential equations (ODEs) and PDEs symbolically and numerically.
The procedures available for the solution of initial and boundary value problems for
ODEs greatly exceed those that are available for the solution of initial and boundary
value problems for PDEs. For that reason we have created a number of M aple pro-
cedures that deal with problems arising in the solution of PDEs and are related to the
material in each of the chapters in the book. These procedures generate solutions to
problems using the methods developed in each chapter. A graphical representation
of the results can often be generated. This has been done for the first ten chapters of
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XXiv PREFACE

the book, whose material generally follows the presentation of the second edition of
the text.

Two new chapters dealing with finite difference and finite element methods have
been added for the third edition. For these two chapters a large number of Maple
procedures have been created for the solution of various initial and boundary value
problems for PDEs. Thus, not only are the ideas behind the numerical solution
methods presented, but their implementation is made possible. It was not possible
to do everything in triplicate, using Maple, Matlab, and Mathematica, because
many new codes were created. As a result, it was decided to restrict our presentation
to the use of Maple.

The first chapter is concerned with the formulation of problems that give rise
to first- and second-order PDEs representative of the three basic types (parabolic,
hyperbolic, and elliptic) considered in this book. These equations are all obtained as
limits of difference equations that serve as models for discrete random walk problems.
These problems are of interest in the theory of Brownian motion and this relationship
is examined. A new section has been added that presents random walks that yield
first order PDEs in the limit. Finally, a section that employs Maple procedures to
simulate the various random walks and thereby generate approximate solutions of the
related PDEs is included. These methods fall under the general heading of Monte
Carlo methods. They represent an alternative to the direct numerical solution of
the difference equations in the manner considered in Chapter 11. Only elementary
concepts from probability theory are used in this chapter.

Chapter 2 deals with first order PDEs and presents the method of characteristics for
the solution of initial value problems for these equations. Problems that arise or can
be interpreted in a wave propagation context are emphasized. First order equations
also play an important role in the methods presented in Chapters 9 and 10.

In Chapter 3, PDEs are classified into different types and simplified canonical
Jorms are obtained for second order linear equations and certain first order systems in
two independent variables. The concept of characteristics is introduced for higher-
order equations and systems of equations, and its significance for equations of different
types is examined. In addition, the question of what types of auxiliary conditions are
to be placed on solutions of PDEs so that the resulting problems are reasonably for-
mulated is considered. Further, some physical concepts, such as energy conservation
and dispersion, which serve to distinguish equations of different types are discussed.
Finally, the concept of adjoint differential operators is presented.

Chapter 4 presents the method of separation of variables for the solution of prob-
lems given in bounded spatial regions. This leads to a discussion of eigenvalue prob-
lems for PDEs and the one-dimensional version thereof, known as the Sturm-Liouville
problem. Eigenfunction expansions, in general, and Fourier series, in particular, are
considered and applied to the solution of homogeneous and inhomogeneous prob-
lems for linear PDEs of second order. It is also shown that eigenfunction expansions
can be used for the solution of nonlinear problems by considering a nonlinear heat
conduction problem.

In Chapter 5, the Fourier, Fourier sine, Fourier cosine, Hankel, and Laplace trans-
Jorms are introduced and used to solve various problems for PDEs given over un-
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bounded regions in space or time. As the solutions of these problems are generally
obtained in an integral form that is not easy to evaluate, approximation methods for
the evaluation of Fourier and Laplace integrals are presented.

Not all problems encountered in applied mathematics lead to equations with
smooth coefficients or have solutions that have as many derivatives as required by the
order of the PDEs. Consequently, Chapter 6 discusses methods whereby the concept
of solution is weakened by replacing the PDEs by integral relations that reduce the
number of derivatives required of solutions. Also, methods are presented for dealing
with problems given over composite media that can result in singular coefficients.
Finally, the method of energy integrals is discussed and shown to yield information
regarding the uniqueness and dependence on the data of solutions of PDEs.

Green's functions, which are discussed in Chapter 7, depend on the theory of
generalized functions for their definition and construction. Therefore, a brief but self-
contained discussion of generalized functions is presented in this chapter. Various
methods for determining Green'’s functions are considered and it is shown how initial
and boundary value problems for PDEs can be solved in terms of these functions.

Chapter 8 contains anumber of topics. Itbegins with avariational characterization
of the eigenvalue problems considered in Chapter 4, and this is used to verify and
prove some of the properties of eigenvalues and eigenfunctions stated in Chapter 4.
Furthermore, the Rayleigh-Ritz method, which is based on the variational approach, is
presented. It yields an approximate determination of eigenvalues and eigenfunctions
in cases where exact results are unavailable. The classical Riemann method for solving
initial value problems for second order hyperbolic equations is discussed briefly, as
are maximum and minimum principles tor equations of elliptic and parabolic types.
Finally, a number of basic PDEs of mathematical physics are studied, among which
the equations of fluid dynamics and Maxwell’s equations of electromagnetic theory
are discussed at length.

Chapters 9 and 10 deal with perturbation and asymptotic methods for solving
both linear and nonlinear PDEs. In recent years these methods have become an
important tool for the applied mathematician in simplifying and solving complicated
problems for linear and nonlinear equations. Regular and singular perturbation
methods and boundary layer theory are discussed in Chapter 9. Linear and nonlinear
wave propagation problems associated with the reduced wave equation that contains
a large parameter are examined in Chapter 10. These include the scattering and
diffraction of waves from various obstacles and the problem of beam propagation in
linear and nonlinear optics. 1t is also shown in Chapter 10 how singularities that
can arise for solutions of hyperbolic equations can be analyzed without having to
solve the full problem given for these equations. Finally, an asymptotic simplification
procedure is presented that permits the replacement of linear and nonlinear equations
and systems by simpler equations that retain certain essential features of the solutions
of the original equations.

Chapter 11 presents a full discussion of finite difference methods for the numerical
solution of initial and initial and boundary value problems for PDEs. Equations of
all three types, as well as systems of PDEs, are considered. Linear and nonlinear
problems are examined. A large number of difference schemes are introduced, and
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questions of consistency and stability are examined. Specially created and built-
in Maple procedures are presented for implementation of most of these difference
schemes.

The finite element method for the approximate numerical solution of initial and
initial and boundary value problems for a large class of PDEs in two spatial dimensions
is presented in Chapter 12. Itis developed from the Galerkin integral representations
of the given problems and the Galerkin method for constructing approximate solutions
of these problems. Triangulations of the spatial region over which the problem is
formulated are created and finite element solutions are constructed. Maple procedures
that carry out these processes are presented and their use is demonstrated.

The text includes a substantial number of figures. As we have indicated, notonly do
built-in and the newly constructed M aple procedures solve problems analytically and
numerically, but they can also represent results graphically. The figures in Chapters
1, 11, and 12, were generated with the use of Maple, which was not the case for the
remaining figures. This accounts for the difference in the representation of coordinate
axes in some of the figures, for example.

The Bibliography contains a list of references as well as additional reading. The
entries are arranged according to the chapters of the book and they provide a collection
of texts and papers that discuss some or all of the material covered in each chapter,
possibly at a more elementary or advanced level than that of the text.

This book is intended for advanced undergraduate and beginning graduate stu-
dents in applied mathematics, the sciences, and engineering. The student is assumed
to have completed a standard calculus sequence including elementary ODEs, and to
be familiar with some elementary concepts from advanced calculus, vector analysis,
and matrix theory. (For instance, the concept of uniform convergence, the diver-
gence theorem, and the determination of eigenvalues and eigenvectors of a matrix are
assumed to be familiar to the student.) Although a number of equations and prob-
lems considered are physically motivated, a knowledge of the physics involved is not
essential for the understanding of the mathematical aspects of the solution of these
problems.

In writing this book I have not assumed that the student has been previously exposed
to the theory of PDEs at some elementary level and that this book represents the next
step. Thus I have included such standard solution techniques as the separation of
variables and eigenfunction expansions together with the more advanced methods
described earlier. However, in contrast to the more elementary presentations of this
subject, this book does not dwell at great length on the method of separation of
variables, the theory of Fourier series or integrals, the Laplace transform, or the
theory of Bessel or Legendre functions. Rather, the standard results and methods are
presented briefly but from a more general and advanced point of view. Thus, even
with the addition of the numerical finite difference and finite element methods, it has
been possible to present a variety of approaches and methods for solving problems
for linear and nonlinear equations and systems without having the length of the book
become excessive.

There is more than enough material in the book to be covered in a year-long course.
For a shorter course it is possible to use the first part of Chapter 3 and Chapters 4
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and 5 as a core, and to select additional material from the other chapters, such as
numerical methods, as time permits. The book contains many examples. Very often,
new approaches or methods are brought out in the form of an example. Thus the
examples should be accorded the same attention as the remainder of the text.

In preparing the third edition, the material contained in the second edition was
retained, but rewritten, clarified, and revised where necessary, with corrections made
as needed. In addition to the inclusion of two new chapters, some new material was
added throughout the first ten chapters. In particular, M aple methods that deal with
the material in each chapter are presented in a new section at the end of each chapter.
Additionally, for example, Chapter | has a new discussion of random walks related
to first order PDEs. To assist the reader, the sections of the book have been broken
up into a collection of subsections that focus on specific topics and subtopics that are
considered.

A number of new exercises have been created to supplement those of the second
edition. The exercises are placed at the end of each section. With a few exceptions, no
substantially new theories or concepts are introduced in the exercises. For the most
part, the exercises are based on material developed in the text, and the student should
attempt to solve as many of them as possible to test his or her mastery of the subject.
Answers and solutions to selected exercises and all the Maple codes that were created
for use in the book are available via the FTP site:

Jtp:/fip.wiley.com/sci_tech_med/partial _differential/
A supplementary Instructor’s Solutions Manual is also available.

I would like to thank Susanne Steitz and Steve Quigley, mathematics editors at
Wiley-Interscience, for their support of this project. I acknowledge my gratitude to
my wife, Naomi, for her assistance and understanding during the many hours that
were spent in writing this book.

ERICH ZAUDERER

New Jersey
March 2006
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