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PREFACE

The book is a self-contained introduction into stochastic processes with special em-
phasis on their applications in science, engineering, finance, computer science and
operations research. It provides theoretical foundations for modeling time-dependent
random phenomena in these areas and illustrates their application through the analy-
sis of numerous, practically relevant examples. As a nonmeasure theoretic text, the
material is presented in a comprehensible, application-oriented way. Its study only
assumes a mathematical maturity which students of applied sciences acquire during
their undergraduate studies in mathematics and probability theory. However, readers
with this background are not advised to completely ignore the introductory chapter 1.
Although this chapter mainly summarizes standard knowledge on random variables,
it also deals with subjects as mixed probability distributions, moment generating
functions, nonparametric classes of probability distributions, inequalities, conver-
gence criteria, and limit theorems, which undergraduate courses usually not cover.
For readers who need to refresh their knowledge of probability theory studying chap-
ter 1 is imperative anyway. The study of stochastic processes as of any other mathe-
matically based science requires less routine effort, but more creative work on one's
own. Therefore, numerous exercises have been added to enable readers to assess to
which extent they have grasped the subject. Solutions to most of the exercises can be
found in an appendix or exercises are given together with their solutions. To make
the book attractive to theoretically interested readers as well, some important proofs
and challenging examples and exercises have been included. Exercises marked with
a star belong to this category. The chapters are organized in such a way that reading
a chapter only requires knowledge of some of the previous ones. The book has been
developed as a course text for undergraduates. But parts of it may also serve as a
basis for preparing senior undergraduate and graduate level courses for students of
applied fields.

Generally, this book does not deal with data analysis aspects of stochastic processes.
It can be anticipated that readers will use a software package for tackling statistical
and numerical problems. However, studying the text will enable readers to work
more creatively with such software and develop their own one. On the whole, the au-
thor hopes the book will fulfil its main purpose which is to enable readers to apply
stochastic modeling in their own fields.

This book has its origin in the author's text Stochastische Prozesse fiir Ingenieure [6]
(English translation [7]). This is still visible, but substantial changes in contents and
presentation have led to a new work. Helpful comments are welcome and should be
sent to the author: Beichelt@stats.wits.ac.za.

Johannesburg, November 2005 Frank Beichelt
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SYMBOLS AND ABBREVIATIONS

O m e symbols after an example, a theorem, a definition
fi=c f(=c forall te T

f*g convolution of two functions f and g

£ nth convolution power of f

_}'(s), L{f} Laplace transform of a function f

o(x) Landau order symbol

o ij Kronecker symbol

X4 max(0,x)

Probability Theory

X, Y, Z random variables

E(X), Var(X) mean (expected) value of X, variance of X

Sy(x), Fx(x) probability density function, (cumulative probability) distribution
function of X

Fy(y|x), fy(ylx) conditional distribution function, density of Y given X=x

Xy, Fy(x) residual lifetime of a system of age ¢, distribution function of X;

Ry residual lifetime of a system which is operating at time ¢

E(Y]x) conditional mean value of Y given X =x

Mx), Ax) failure rate, integrated failure rate (hazard function)

N, 02) normally distributed random variable (normal distribution) with
mean value p and variance 02

P(x), P(x) probability density function, distribution function of a standard

normal random variable
fx(x1,x2,...,xn) joint probability density function of X=(X,Xp,....Xn)
Fx(x1,X7,...,xn) joint distribution function of X = (X, X>,... ,Xn)
Cov(X, Y), p(X, Y) covariance, correlation between X and Y
M(z) z-transform (moment generating function) of a discrete random
variable or its probability distribution

Stochastic Processes

{X(#), te T}, {X;, t e T} continuous-time, discrete-time stochastic process with
parameter space T

V4 state space of a stochastic process

f1(x), Fy(x) probability density, distribution function of X(#)

Sty st X 15X25 -0 Xn)s Frytg,tn(X1,X2,5 .- ,Xn)  joint probability density,
joint distribution function of (X(1),X(#3), ..., X(tn))



m(f) trend function of a stochastic process

C(s,0) covariance function of a stochastic process

C(7) covariance function of a stationary stochastic process

C(0), {C(f), t= 0} compound random variable, compound stochastic process

p(s,) correlation function of a stochastic process

{T1,T5,...} random point process

{Y1,Y,,...} sequence of interarrival times, renewal process

N integer-valued random variable, discrete stopping time

{N(@), 120} (random) counting process

N(s, t) increment of a counting process in (s, ]

H(t), H(?) renewal function of an ordinary, delayed renewal processs

A1) forward recurrence time, point avaliability

B(?) backward recurrence time

R(f), {R(t), t 2 0} risk reserve, -process; repair cost rate, -process

R; residual lifetime of a system operating at time ¢

A, A1) stationary (long-run) availability, point availability

Pijs Pi i transition probabilities of a homogeneous, discrete-, continuous-
time Markov chain

dij- 4 conditional, unconditional transition rates (transition intensities)
of a homogeneous, continuous-time Markov chain

{n;;ie L} stationary state distribution of a homogeneous Markov chain

kj, M birth, death rates

AU, P arrival rate, service rate, traffic intensity A/\L (in queueing models)

Wi mean sojourn time of a semi-Markov process in state i

u drift parameter of a Brownian motion process with drift

w waiting time in a queueing system

L lifetime, cycle length, queue length, continuous stopping time

L(x) first-passage time with regard to level x

L(a,b) first-passage time with regard to level min(a, b)

{B(f),t=0} Brownian motion (process)

62 62 = Var(B(1)) (volatility)

{8(2),t=0} standardized Brownian motion (¢ = 1)

{B(#),0<t<1} Brownian bridge

{D(),t=0} Brownian motion with drift

{Du(?),t=20} shifted Brownian motion with drift

M) absolute maximum of the Brownian motion (with drift) in [0, 7]

M absolute maximum of the Brownian motion (with drift) in [0, c0)

{U(@®), t=20} Ornstein-Uhlenbeck process, integrated Brownian motion process
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CHAPTER 1

Probability Theory

1.1 RANDOM EVENTS AND THEIR PROBABILITIES

Probability theory comprises mathematically based theories and methods for investi-
gating random phenomena. Formally, random phenomena occur in connection with
random experiments. A random experiment is characterized by two properties:

1. Repetitions of the experiment, even if carried out under identical conditions, gen-
erally have different outcomes.

2. The possible outcomes of the experiment are known.

Thus, the outcomes of a random experiment cannot be predicted with certainty. How-
ever, if random experiments are repeated sufficiently frequently under identical con-
ditions, stochastic or statistical regularities can be found. Examples of random exper-
iments are:

1) Counting the number of vehicles arriving at a filling station a day.

2) Counting the number of shooting stars during a fixed time interval. The possible
outcomes are, as in the previous random experiment, nonnegative integers.

3) Recording the daily maximum wind velocity at a fixed location.

4) Recording the lifespans of technical systems or organisms.

5) Recording the daily maximum fluctuation of share prices. The possible outcomes
are, as in the random experiments 3 and 4, nonnegative numbers.

6) The total profit sombody makes with his financial investments a year. This 'profit’
can be negative, i.e. any real number can be the outcome.

As the examples show, in this context the term 'experiment' has a more abstract mean-
ing than in the customary sense.

Random Events A possible outcome a of a random experiment is called an elemen-
tary or a simple event. The set of all elementary events is called space of elementary
events or sample space. Here and in what follows, the sample space is denoted as M.
A sample space M is discrete if it is a finite or a countably infinite set.

A random event (briefly: event) A is a subset of M. An event A4 is said to have oc-
curred if the outcome a of the random experiment is an element of 4: a € A.

Let 4 and B be two events. Then the set-theoretic operations intersection 'n' and
union 'U' can be interpreted in the following way:

AN B is the event that both 4 and B occur and 4A\UB is the event that 4 or B (or
both) occur.
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Figure 1.1 Venn Diagram

If A < B (A is a subset of B), then the occurrence of A implies the occurrence of B.
A\B is the set of all those elementary events which are elements of 4, but not of B.
Thus, 4\B is the event that 4 occurs, but not B. Note that A\B =A\(4 N B).

The event A =M\A is the complement of A. If A occurs, then A cannot occur and
vice versa.

Rules of de Morgan Let A,A,,...,An be asequence of random events. Then
n n 5 n n -~
Uizt 4i=Niz1 4 Nizi 4;=Uiz1 45 (1.1)
In particular, if n=2, 4} =4 and A, = B, the rules of de Morgan simplify to
AUB=ANB, ANnB=AUB. (1.2)

The empty set @ is the impossible event, since, for not containing an elementary
event, it can never occur. By definition, M contains all elementary events so that it
must always occur. Hence M is called the certain event. Two events A and B are cal-
led disjoint or (mutually) exclusive if their joint occurrence is impossible, i.e. if
A~ B=@ . In this case the occurrence of 4 implies that B does not occur and vice
versa. In particular, 4 and A are disjoint events (Figure 1.1).

Probability Let M be the set of all those random events 4 which can occur when
carrying out the random experiment, including M and @ . Further, let P =P(A4) be a
function on M with properties

) P@)=0, PM)=1,

II) foranyeventd, 0<P(A)<1,

[11) for any sequence of disjoint (mutually exclusive) random events 41,47, ..., ie.
A;NA; =@ fori+#j,

P( Ui Ai) =X PA)). (1.3)

The number P(A4) is the probability of event A. P(4) characterizes the degree of cer-
tainty of the occurrence of 4. This interpretation of the probability is justified by the
following implications from properties 1) to III).
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1) P(A) =1 - P(A).
2) If A c B, then P(B\4) = P(B) — P(A). In this case, P(4) < P(B).
For any events 4 and B, P(B\4) = P(B) — P(A N B).
3) If 4 and B are disjoint, i.e. A "B =, then
P(AUB) = P(A) + P(B).
4) For any events 4, B, and C,

P(AUB) = P(4) + P(B) - P(4 " B), (1.4)
P(AUBUC)=P(A)+P(B)+ P(C)—- P4 NB)—PANC)—P(BNC)
+P(AN BN O).

5) In generalizing implications 4), one obtains the Inclusion-Exclusion-Formula: For
any random events A, Ay, ..., An,

P(A,UAQU--Udp) = Zpo (DR P,
with

n
Py = X PA; nA0nAy),
i]<i2<- J ~<ik
where the summation runs over all k-dimensional vectors

(i1,00,niy) with | €i| <ip<---<ip<n.

Note It is assumed that all those subsets of M which arise from applying operations
M, U and \ to any random events are also random events, i.e. elements of M.

The probabilities of random events are usually unknown. However, they can be esti-
mated by their relative frequencies. If in a series of » repetitions of one and the same
random experiment the event 4 has been observed m = m(A4) times, then the relative
frequency of A is given by

A A
pait) =22,

Generally, the relative frequency of 4 tends to P(4) as n increases:
nll_f)nmpn(A)ZP(A)- (1.5)

Thus, the probability of 4 can be estimated with any required level of accuracy from
its relative frequency by sufficiently frequently repeating the random experiment (see
section 1.9.2).

Conditional Probability Two random events 4 and B can depend on each other in
the following sense: The occurrence of B will change the probability of the occur-
rence of 4 and vice versa. Hence, the additional piece of information 'B has occurred'
should be used to predict the occurrence of 4 more precisely. This is done by defin-
ing the conditional probability of 4 given B.



