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Preface

Glass has been manufactured for thousands of years, and in the early
days was used to make jewellery and highly-prized jars. Today, hand-cut
lead crystal glass is valued for its refractive properties, and soda-lime—
silica glass is used to make containers and most of our windows. Among
the special properties of glass, ease of fabrication, optical and electrical
properties, chemical durability and hardness are those most relevant for
the majority of modern-day applications. Without glass, the growth of
the geological, biological and materials sciences (with their heavy
reliance on optical characterization) would have been impossible. Design
for selected electrical applications has always been important, and the
early electronic and lighting industries would not have succeeded with-
out -the availability of high resistance, impermeable glass envelopes for
the protection of the sensitive internal components.

Modern society has created a demand for a whole new range of glass
products for use in information transmission, signal processing, energy
conservation (plus generation and storage), waste encapsulation, and
healthy living in hostile environments. In this book the early chapters
are concerned principally with glass fabrication while the later chapters
concentrate on the development of glasses for particular applications.
Following a brief introduction (chapter 1), chapter 2 provides an
overview of the very active field of sol-gel glass production, which
increasingly has widespread applications in many fields, including coat-
ings, optical fibres, doped glasses, catalysis, microballoon fabrication
and transparent insulating glasses. Chapter 3 looks at the manufacture
of nitrogen-rich glasses and the corresponding improvements in physical
properties. A major current field of activity is the modification of glass
properties by coatings, and this is the subject of chapter 4, the main
emphasis of which is the use of coatings in the architectural field.
Chapter 5 describes the fabrication of very thin glass sheets to accurate
tolerances for optical display panels. Chapter 6 covers glass ceramics,
which have the advantages of ease of fabrication (as for conventional
glasses) combined with the improved strength properties of fine-grained,
non-porous Ceramics.

Chapter 7 describes ionically conducting glasses, and is followed by a
group of chapters concerned with variable glass durability: chapter 8
discusses bioactive glasses and provides a view of the developing field of
materials for medical applications; chapter 9 describes the soluble
glasses which provide a valuable source of trace. elements in the diet of
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ruminant animals feeding on marginal pasture lands; and chapter 10
analyses the development of glass as a storage medium for radioactive
waste disposal. The last four chapters of the book are concerned with
optical applications, always a major field of activity for glass technolo-
gists. Glasses used for optical non-linearity in the presence of high-inten-
sity light beams are discussed in chapter 11, and special optical elements
such as gradient-index lenses (particularly important in developing
optical processing systems such as compact discs) are discussed in
chapter 12. Glasses which have been developed for their exceptional
infrared transmission are described in chapter 13. Finally, chapter 14
describes the photostructural characteristics of chalcogenide glasses and
considers the possibilities of fabricating optical elements such as diffrac-
tion gratings and Fresnel lenses on a fine scale.

This book is intended as a stimulant to the development of further
areas of glass technology; we hope that it will be a valuabie source of
reference and a teaching resource for advanced students and research
workers. We look forward to the many future developments in the
applications of glass which are as novel and varied as those described
here.

M.C.
IM.P.
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1 High-performance glasses

M. CABLE

1.1 ' Introduction

A widely used definition says that a glass is an inorganic product of
fusion which has cooled to a rigid state without crystallizing. Although
this definition, originally adopted about sixty years ago for commercial
rather than scientific reasons, is open to some objections, it contains the
essential features by including information about both structure and
properties. Glasses are materials which have amorphous or liquid-like
structures but which behave as solids at low temperatures. A glass
scientist generally considers the crucial demonstration to be that a glass
shows transformation range behaviour or a glass transition. This is a
particular kind of reversible behaviour in a narrow range of tem-
peratures within which the transition from liquid to non-crystalline solid
occurs on cooling (or the converse on heating). Within this interval,
which is characterized by one temperature always called T'g, properties
depend on thermal history, not just current temperature, and properties
can be observed to change with time. This happens because the
transformation range is the temperature range over which structural
relaxation times are measurable, the limits being that they are too short
to measure at the upper end and too long to detect at the lower end.
Within this range, density, viscosity, electrical conductivity, heat capa-
city, and so on can be changed reversibly by suitable heat treatment but
different properties involve different mechanisms of relaxation and the
value of T, depends on the particular property being used to measure it.
The values of properties at lower temperatures can thus be varied to
some extent by controlling the rate of cooling: rapid cooling ‘freezes in’
a structure that would be in equilibrium (as a glass) near the upper end
of the transformation range while very slow cooling will give a structure
that would be in equilibrium at a lower temperature.

Figure 1.1 shows the most common way of visualizing these effects by
considering how the volume of a melt may change when cooled at
different rates. The room-temperature density of the glass can clearly be
affected by its heat treatment. Density and refractive index are related,
showing why optical glasses, which need refractive index to be constant
within one lens element to about 1 part in 50000, need fine annealing to
give the whole slab the same thermal history, not merely to relieve
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Volume

T

Temperature

Figure 1.1 Schematic diagram of the change in volume on cooling of a typical multi-com-

ponent glass melt showing the difference between a melt which comes to equilibrium by

crystallizing and one that forms a glass; also how rate of cooling affects properties in and

below the transformation range. Temperatures marked are: 77 the liquidus, 7's the
solidus, and T, the glass transition.

stresses, which is the usual purpose of annealing. It is sometimes useful
to describe a glass as having a fictive temperature, meaning the tem-
perature at which the existing structure would be the equilibrium one:
from what has already been said about rates of relaxation, it will be
evident that the fictive temperature must lie within the transformation
range. If the material is truly glassy it can be cycled at will through the
glass transition and a previous condition re-established: some apparently
amorphous materials can undergo only one transformation (to the true
solid state) when heat treated and should not be called glasses.

High-performance glasses are clearly ones which perform better than
previously possible in some important respect, but glasses are used for
so many different purposes that this can cover a very wide range of
properties and processes, as the contents of this book are intended to
make clear. Such developments imply that the properties of materials
are much better understood than they used to be and that this
knowledge can be used to good advantage.

1.2 Characteristic properties of glasses

The special properties of glasses are related to their liquid-like struc-
tures. Glasses thus are isotropic and lack internal grain boundaries or
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structural elements lying in specific orientations. The common glasses
have atomic structures with largely covalent bonds which make them
able to transmit light, and the optical properties which result from these
properties have long been amongst their most valued attributes.

The very rapid change of viscosity with temperature is one of the
most characteristic and interesting features of glasses and is the key to
most forming operations. The range of practical interest is unusually
broad and covers more than fifteen decades (see Figure 1.2). At high
temperatures, most silicate glass melts are much more viscous than other
common materials but still flow easily under gravity or other relatively
low stresses. They show Newtonian behaviour (rate of flow is propor-
tional to shear stress, in isothermal conditions) and a rod, even one of
varying diameter, is therefore easily drawn down to a much smaller
diameter without necking and consequent fracture. When cooled suffi-
‘ciently the glass becomes so viscous that it behaves like an elastic solid,
but there is an intermediate region of viscoelastic behaviour in which
both viscous flow and elastic deformation must be taken into account.
Quantitative description of flow behaviour in this range is a complex
task but an excellent discussion related to the tempering of glass is given
by Gardon (1980). Rekhson (1984) gives a more general account.

15
Viscosity
10 ‘t —
log n l
(dPas) 1
|
5 —
0 —
l 4 l l
0 500 1000 1500 2000

Temperature °C

Figure1.2 The viscosity—temperature characteristics of some important glass forming

liquids: 1. pure silica; 2. a glass for fibre insulation; 3. a modern container glass; 4. English

lead crystal; 5. sodium disilicate; 6. sodium diborate; 7. sodium metaphosphate; 8. a heavy
metal fluoride glass; 9. a glassy metal (Au~Ge-Si).
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Methods of glass forming thus depend on taking the melt at a
temperature where gravity does not make flow too rapid, then simultan-
eously applying forces to shape it and cooling it to make it rigid as soon
as the forming is finished. Simple shapes such as circular rods and tubes
and spherical bulbs can be shaped without using moulds, but more
complex items such as containers use moulds, the glass being made to
flow by compressed air, pressing, or occasionally suction. The viscosity—
temperature relation is crucially important to the technology of glass
manufacture and is the first information a glass manufacturer would
want to know if asked to produce a completely new kind of glass.
Although the viscosity of typical silicate glasses varies greatly with
temperature, the range of temperatures over which forming operations
may be done is about 350 °C and almost any desired type of product can
be formed by suitable control of temperatures and rates of cooling. The
viscous properties of typical silicate glass melt have made hand forming,
with or without moulds, a versatile method of production, which needs
only very simple tools but much skill, and it has been exploited for
several thousand years. Extensive mechanization of glass-forming
operations has occurred only within the past century: the major
processes have recently been reviewed by Cable (1991). Some high-per-
formance glasses have even steeper viscosity—temperature curves than
the common silicate glasses, and the very precise control of temperature
which is then needed can be a source of considerable difficulty in
glass~forming operations.

Apart from its importance to the glass technologist, the rapid change
of viscosity with temperature gives an obvious and useful qualitative
insight into why many viscous liquids can form glasses. Viscosity
measures the ease with which ions or other small groups of atoms can
rearrange themselves under the influence of stress, and a sufficiently
high viscosity at the liquidus, where crystallization ought to occur, can
mean that it is very difficult for crystals to form. The earliest fruitful
picture of glass structures was the random network hypothesis of
Zachariasen (1932), who considered the geometrical constraints required
to build up extended but slightly irregular three-dimensional structures
in which the bonding requirements of every atom were satisfied without
appreciable distortion. This is an essentially static model which ad-
dresses the question of how a somewhat disordered material can have an
energy content only a little greater than that of the true equilibrium crystal-
line form. Consideration of the structures of oxides led Zachariasen
to suggest a set of rules which showed that only materials built up from
tetrahedral or triangular units sharing corners but not edges or faces
could be expected to form glasses. Slight variations in the angles of the
bonds forming the hinges between adjoining units allow a long-range
structure to avoid the exact regularity of a crystal. These rules gave, and
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still give, valuable qualitative insight into many aspects of oxide glass
behaviour but fail to include all glassy systems; most organic glasses do
not have such structures, and nor does sulphur, which forms a glass if
melted and cast into water.

Suppression of crystallization is the key to glass formation and must
involve kinetics. Crystallization requires the rearrangement of ions or
atoms to construct the crystal lattice and, even though the driving force
and the details of the rearrangement are difficult, it is natural to link
high viscosity with low atomic mobility (as in the classic Stokes-FEinstein
equation) and thus with very low rates of nucleation or growth of
crystals. Typical silicate melts are so viscous, even at high temperatures,
that it is easy to understand why crystallization can be suppressed by
moderately rapid cooling and a glass easily formed. However, as Figure
1.2 shows, not all glasses are formed from highly viscous melts and
other criteria are needed. The most useful approach is to use theories of
rates of crystal nucleation and crystal growth to estimate the rate of
cooling needed to prevent detectable crystallization. If a melt can be
cooled more rapidly than this it should be possible to produce it in
glassy form. The maximum rate of nucleation nearly always occurs at a
temperature considerably lower than that at which crystal growth is most
rapid (see Figure 1.3), so that crystallization, or devitrification, is more
readily avoided during cooling than on subsequent reheating.

The maximum rate of cooling achievable in practice depends on both
- the size of the body being cooled and its thermal properties. For given

Nucleation __ Growth

Rate

Temperature

Figure1.3 Schematic diagram of the temperature dependence of rates of crystal nucle-
ation and crystal growth in typical glasses. Note that there is often a range just below the
liquidus where, although growth is possible, nucleation is so slow that very few crystals are
likely to form; such a melt can be held a little below the liquidus without devitrifying. Both
nucleation and growth become extremely slow in the transformation range.
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conditions at the surface, the rate of cooling inside a simple shape such
as a flat slab or a cylinder is proportional to its thermal conductivity but
inversely proportional to the square of its thickness or diameter, if these
are the only two variables. Only products of small thickness or diameter
can therefore be produced if rapid cooling is needed to form a glass.
The most obvious example of this is the production of glassy metals,
which has been reviewed by Vander Sande and Freed (1983). Here the
necessary very high rates of cooling of the extremely fluid melts can
only be achieved because the melts have high thermal conductivities and
are formed into thin ribbons.

The ease with which a glass can be formed and worked may thus
depend on several properties besides its viscosity—temperature relation
and stability against crystallization; these include thermal conductivity,
heat capacity, and transparency to thermal radiation. Theories of glass
formation were discussed in detail by Rawson (1967) and a more recent
good review is by Uhlmann and Yinnon (1983).

Because of the important uses of glassy thin films and fibres in
electronics and optical communication systems, there is a very active
current interest in pushing glass-forming capabilities to their limits.
Various systems other than metals, which are difficult to produce as
glasses, are being widely studied especially for optoelectronic devices.
Amongst the most important of these are heavy-metal halide glasses
(see chapter 13). Although the manufacture of these has its difficulties,
many of them are much easier to produce than glassy metals; some
halide glasses can be made up to 25 mm thick.

Once cooled, a glass has quite different properties. Although glasses
are characteristically brittle and rather weak in practice, the poor
strength is due to surface damage and not to the fundamental nature of
the material. Pure silica, which has covalent bonds and should be very
strong, is easily prepared without much loss of its theoretical strength
and, unlike most other glasses, does not lose strength simply by being
exposed to the air, because it has little susceptibility to corrosion by
water vapour. Maintaining the high strength that ought to be possible
with many glasses in an active field of endeavour. One obvious way to
preserve their strength is to apply coatings which may prevent surface
damage but, as Kirkbride and Williams show in chapter 4, there are
many other advantages of applying surface coatings. Another method of
improving strength is to convert the glass to a fine grained glass ceramic,
and these materials are discussed by James and Jones in chapter 6.
Many glasses are hard and working them in the 'solid state (cutting,
grinding and polishing) requires methods entirely different from those
used at high temperatures. In these conditions the isotropic nature of
the material assists the production of a high-quality polish and the
ability to hold very finely detailed structures.



