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Foreword

This book contains an expanded and smoothed version of lecture notes delivered
by the authors at the Advanced School on Numerical Solutions of Partial Differ-
ential Equations: New Trends and Applications, which took place at the Centre
de Recerca Matematica (CRM) in Bellaterra (Barcelona) from November 15th to
22nd, 2007.

The book has three parts. The first part, by Silvia Bertoluzza and Silvia
Falletta, is devoted to the use of wavelets to derive some new approaches in the
numerical solution of PDEs, showing in particular how the possibility of writ-
ing equivalent norms for the scale of Besov spaces allows to write down some new
methods. The second part, by Giovanni Russo, provides an overview of the modern
finite-volume and finite-difference shock-capturing schemes for systems of conser-
vation and balance laws, with emphasis in giving a unified view of such schemes by
identifying the essential aspects of their construction. In the last part Chi-Wang
Shu gives a general introduction to the discontinuous Galerkin methods for solving
some classes of PDEs, discussing cell entropy inequalities, nonlinear stability and
error estimates.

The school that originated these notes was born with the objective of pro-
viding an opportunity for PhD students, recent PhD doctorates and researchers
in general in fields of applied mathematics and engineering to catch up with im-
portant developments in the fields and/or to get in touch with state-of-the-art
numerical techniques that are not covered in usual courses at graduate level.

We are indebted to the Centre de Recerca Matematica and its staff for host-
ing the advanced school and express our gratitude to José A. Carrillo (Institucié
Catalana de Recerca i Estudis Avancats — Universitat Autonoma de Barcelona),
Rosa Donat (Universitat de Valéncia), Carlos Parés (Universidad de Miélaga) and
Yolanda Vidal (Universitat Politécnica de Catalunya) for the mathematical organ-
isation of the course and for making it such a pleasant experience.
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Part 1

Wavelets and Partial
Differential Equations

Silvia Bertoluzza and Silvia Falletta






Introduction

Wavelet bases were introduced in the late 1980s as a tool for signal and image pro-
cessing. Among the applications considered at the beginning we recall applications
in the analysis of seismic signals, the numerous applications in image processing

image compression, edge-detection, denoising, applications in statistics, as well
as in physics. Their effectiveness in many of the mentioned fields is nowadays well
established: as an example, wavelets are actually used by the US Federal Bureau
of Investigation (or FBI) in their fingerprint database, and they are one of the
ingredients of the new MPEG media compression standard. Quite soon it became
clear that such bases allowed to represent objects (signals, images, turbulent fields)
with singularities of complex structure with a low number of degrees of freedom,
a property that is particularly promising when thinking of an application to the
numerical solution of partial differential equations: many PDEs have in fact solu-
tions which present singularities, and the ability to represent such a solution with
as little as possible degrees of freedom is essential in order to be able to implement
effective solvers for such problems. The first attempts to use such bases in this
framework go back to the late 1980s and early 1990s, when the first simple adap-
tive wavelet methods [32] appeared. In those years the problems to be faced were
basic ones. The computation of integrals of products of derivatives of wavelets —
objects which are naturally encountered in the variational approach to the nu-
merical solution of PDEs — was an open problem (solved later by Dahmen and
Michelli in [25]). Moreover, wavelets were defined on R and on R™. Already solving
a simple boundary value problem on (0,1) (the first construction of wavelets on
the interval [20] was published in 1993) posed a challenge.

Many steps forward have been made since those pioneering works. In par-
ticular thinking in terms of wavelets gave birth to some new approaches in the
numerical solution of PDEs. The aim of this course is to show some of these new
ideas. In particular we want to show how one key property of wavelets (the pos-
sibility of writing equivalent norms for the scale of Besov spaces) allows to write
down some new methods.






Chapter 1

What is a Wavelet?

Let us start by explaining what we mean by wavelets. There are in the literature
many definitions of wavelets and wavelet bases, going from the more strict ones
(a wavelet is the dilated and translated version of a mother wavelet satisfying a
suitable set of properties) to more and more general definitions. The aim of this
chapter is to review the classical definition of wavelets for R and then point out
which of its properties can be retained when replacing R with a generic domain €.

1.1 Multiresolution Analysis

We start by introducing the general concept of multiresolution analysis in the
univariate case.

Definition 1.1. A Multiresolution Analysis (MRA) of L?(R) is a sequence {V;};ez
of closed subspaces of L?(R) verifying:

i) the subspaces are nested: V; C Vj4; for all j € Z;
ii) the union of the spaces is dense in L?(R) and the intersection is null:

Uvi=2’®. vi={ok (1.1)

JEZ JEZ

iii) there exists a scaling function ¢ € Vj such that {¢(- — k), k € Z} is a Riesz’s
basis for Vj.

We recall that a set {ey} is a Riesz basis for its linear span in L?(R) if and only
if the functions ey are linearly independent and the following norm equivalence

holds,
2
}: ~ Z 2
H k ckele?(R)— - lexl*
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Here and in the following we use the notation A ~ B to signify that there exist
positive constants ¢ and C, independent of any relevant parameter, such that
¢B < A < CB. Analogously we will use the notation A < B (resp. A 2 B),
meaning that A < CB (resp. A > ¢B).

It is not difficult to check that the above properties imply that the set
{ir =202 - —k), k€ Z}

is a Riesz’s basis for Vj, yielding a norm equivalence between the L?-norm of a
function in V; and the #2-norm of the sequence of its coefficients with constants
independent of j.

The inclusion Vi C Vi implies that the scaling function ¢ can be expanded
in terms of the basis of V; through the following refinement equation

p(z) =Y hrp(2z — k) (1.2)

keZ

with {h}rez € €2(Z). The function ¢ is then said to be a refinable function and
the coefficients hy are called refinement coefficients.

Since V; C Vj4, it is not difficult to realize that an approximation fj1; of a
function f at level j+1 “contains” more information on f than the approximation
f; at level j. As an example, we can consider f; = P;f, where P; : L*(R) — V;
denotes the L?(R)-orthogonal projection onto V;. Remark that Pj,1P; = P; (a
direct consequence of the nestedness of the spaces V;). Moreover, we have that
P;jPj 1 = Pj: fj41 contains in this case all information needed to retrieve f;.
The idea is now to encode somehow the “loss of information” that we have when
projecting f;41 onto V;. This is done by introducing the complement wavelet space
W;. In order to do that, we consider a more general framework, in which P; is
not necessarily the orthogonal projection and which yields the construction of a
biorthogonal multiresolution analysis, as specified in the following section.

The Biorthogonal MRA

To be more general, let us start by choosing a sequence of uniformly bounded
(not necessarily orthogonal) projectors P; : L*(R) — V; verifying the following
properties:

Pi(f(- — k279))(z) = Py f(z — k27), (1.4)
Py f((2))(@) = P f(20). (1.5)

Remark again that the inclusion V; C Vjy, guarantees that P 1P, = P;. On
the contrary, property (1.3) is not verified by general non-orthogonal projectors
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and expresses the fact that the approximation P;f can be derived from Pj;f.
Equations (1.4) and (1.5) require that the projector P; respects the translation
and dilation invariance properties (i) and (ii) of the MRA.

Since {pox} is a Riesz’s basis for V; we have that for f € L*(R)

Pof = ar(f)eor
P

with ay : L2(R) — R linear and continuous. By the Riesz’s Representation Theo-
rem, for each k, there exists an element @g x € L?(R) such that

ak(f) = <f’ 950,k>,

where we denote by (-,-) the L?-scalar product. We have the following lemma:

Lemma 1.2. The set {@okx, k € Z} forms a Riesz’s basis for the space Vo =
Py (L?(R)) (where Py denotes the adjoint of Py). Moreover we have

$0,k(x) = Po,0(z — k). (1.6)

Proof. We start by remarking that since ¢¢ , € Vp, we have that

Po.n = Popon = Y _(P0o.n: Po.k)P0.k,
k

and this implies
(Bo,nsP0k) = On k- (1.7)

Remark that (1.7) implies that the functions @g are linearly independent. By
definition, since {¢p x} is a Riesz’s basis for V; there exist constants A and B such

that
2\ 1/2 1/2
A(;|ak| ) = “Xk:akwo,k‘ — = B(glakp) .
We have
_ _ (fs 2k &k Pok) _ >k ok (f)ék
“ ;&cwo’k. L2®)  gerr®)  |Ifllamw feSEZIER) Ifllz2w)
< up (Celw(IP)A(T )
feL?(R) ”f”LZ(lR)

I Pofll 2wy (X 161%)/2 1/2
< sup 5( ¢ 2) (18
e llem 2_lel) e 8)



