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Preface

This monograph is an introduction to optimal control theory for systems
governed by vector ordinary differential equations. It is not intended as a
state-of-the-art handbook for researchers. We have tried to keep two types
of reader in mind: (1) mathematicians, graduate students, and advanced
undergraduates in mathematics who want a concise introduction to a field
which contains nontrivial interesting applications of mathematics (for
example, weak convergence, convexity, and the theory of ordinary
differential equations); (2) economists, applied scientists, and engineers who
want to understand some of the mathematical foundations of optimal
control theory.

In general, we have emphasized motivation and explanation, avoiding the
“definition-axiom-theorem-proof” approach. We make use of a large
number of examples, especially one simple canonical example which we
carry through the entire book. In proving theorems, we often just prove the
simplest case, then state the more general results which can be proved. Many
of the more difficult topics are discussed in the “Notes’ sections at the end of
chapters and several major proofs are in the Appendices. We feel that a solid
understanding of basic facts is best attained by at first avoiding excessive
generality.

We have not tried to give an exhaustive list of references, preferring to
refer the reader to existing books or papers with extensive bibliographies.
References are given by author’s name and the year of publication, e.g.,
Waltman [1974].

Prerequisites for reading this monograph are basic courses in ordinary
differential equations, linear algebra, and modern advanced calculus
(including some Lebesgue integration). Some functional analysis is used, but
the proofs involved may be treated as optional. We have summarized the
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relevant facts from these areas in an Appendix. We also give references in
this Appendix to standard texts in these areas.

We would like to express our appreciation to: Professor Jim Yorke of the
University of Maryland for providing several important and original proofs
to simplify the presentation of difficult material; Dr. Stephen Lewis of the
University of Alberta for providing several interesting examples from
Economics; Ms. Peggy Gendron of the University of Minnesota and June
Talpash and Laura Thompson of Edmonton, Alberta for their excellent
typing work; the universities (and, ultimately, the relevant taxpayers) of
Alberta, Maryland, and Minnesota — the first two for their direct financial
support, and the last for providing facilities for J.W.M. while on sabbatical;
The National Research Council of Canada, for its continuing support of
J.W.M.

Edmonton, Alberta Jack W. Macki
August, 1980



List of Symbols

B (x; a)
C, Clu(+)]
C(xo)

Cl

c®
C3S
co(Q))
€

€(t)
€88
€ss(t)

%BBPC

d(x, P)
3S

grad, H

the open ball about x of radius a, {yly~x|<a}
cost function "

cost function evaluated along the optimal control and
response from x,

class of functions having continuous first partial deriva-
tives

functions having continuous partials of every order
functions from C* which have compact support
convex hull of )

controllable set

controllable set at time ¢

controllable set using bang-bang controls
controllable set at time ¢ using bang-bang controls
controllable set using bang-bang piecewise constant
controls

inf {{x—y|: ye P}

boundary of the set S

Clu(-)]= f (s, x{s], u(s)) ds

matrix of partials af'/ax’
(f°,£7)7; the extended velocity vector
oH oH )

radient = (———, .
& ox’ 9x




xii List of Symbols

h(P, Q) Hausdorff metric=inf{e: P=N(Q,e) and Qc
N(P, &)}
H, H(W, x, u) (W, f(x, u))
IntS the interior of the set §
P o ;
k(7) { L c'ThCealr], vi) —EGeal 7], us(r))]e’ =0, vie ¥, Pe N};

here (x4[*], y«(+)) is optimal and ¥ is the range set for
admissible controls

K(t; x0) reachable set at time ¢

Kgg(t; x0) reachable set at time ¢ using bang-bang controls

K(t) {_fl c'Y(t, )% ¢, =0, %€ k(r,-)}, where Y (¢, 7;) is the
fllmdamental matrix for (Lin) satisfying Y (7, 7;) =1

(1) {a+8b| |B]=Bo, A€ H(11), b=Fx,[t:], u(t2))}

(L) x=A(t)x+ B(t)u+c(t)

(LA) x=Ax+ Bu

m dimension of control vectors u(t)

MW, x) sup {H (W, x,v): ve Q}

M = (B, AB, the controllability matrix for (LA)

...,A"'B)

N(P, &) {x: d(x, P)<¢}

o(|x|) stands for any function 4 (x) such that }‘1_{13 h—l(;l‘—) =0

Q* (%) {0%VEAveQ, y=1tx, V), yo=£(t, x, )}

RC reachable cone, |U,~,, (¢, K (¢, Xo))

R" Euclidean n-dimensional space

sgn a a/|a| provided a # 0

T(¢) target state

Upp class of functions in AU, for which |u'(s)| =1

WU, U11>to WU, (to, t1)

WU, (to, t1) class of measurable functions from [z, #;] to Q

WUpc class of piecewise constant functions in U,,

WU ps class of piecewise smooth functions in U,,

a, class of piecewise constant functions in U,, with at most r

discontinuities



List of Symbols

U
V m(to, t1)

Vo
x(¢; to, Xo, u(*))

> M =

(x,y)

xiii

class of functions in %,, having Lipschitz constant A

class of measurable functions from [to, 1] to a given
bounded set ¥ < R™

Ur1>to OVm(tO, tl)
solution of relevant differential equation through xo at
time f, corresponding to u(-); the state vector

i™™ component of x

transpose of x

(x°, x)e R"*"; the extended state vector

Tax'y'

class of successful controls: they steer the initial state to
the target

characteristic function of aset Q, i.e., x=+10n Q,0on
the complement of Q

the unit cube in R™



8262332

Contents

List of Symbols

Chapter I
Introduction and Motivation

1 Basic Concepts

2 Mathematical Formulation of the Control Problem
3 Controllability

4 Optimal Control

5 The Rocket Car

Exercises

Notes

Chapter II
Controllability

1 Introduction: Some Simple General Results

2 The Linear Case

3 Controllability for Nonlinear Autonomous Systems
4 Special Controls 83%.

Exercises

Appendix: Proof of the Bang-Bang Principle

Chapter II1

Linear Autonomous Time-Optimal Control Problems

1 Introduction: Summary of Results

2 The Existence of a Time-Optimal Control; Extremal Controls; the

Bang-Bang Principle

xi

24

24
28
38
44
48
50

57
57

60



X . ; Contents

3 Normality and the Uniqueness of the Optimal Control
4 Applications

5 The Converse of the Maximum Principle

6 Extensions to More General Problems

Exercises

Chapter IV
Existence Theorems for Optimal Control Problems

1 Introduction

2 Three Discouraging Examples. An Outline of the Basic Approach to
Existence Proofs

3 Existence for Special Control Classes

4 Existence Theorems under Convexity Assumptions

5 Existence for Systems Linear in the State

6 Applications '

Exercises

Notes

Chapter V
Necessary Conditions for Optimal Controls—The Pontryagin
Maximum Principle

1 Introduction

2 The Pontryagin Maximum Principle for Autonomous Systems

3 Applying the Maximum Principle

4 A Dynamic Programming Approach to the Proof of the Maximum
Principle

5 The PMP for More Complicated Problems

Exercises

Appendix to Chapter V—A Proof of the Pontryagin Maximum
Principle

Mathematical Appendix

Bibliography

Index

65
74
77
79
80

82
82

83
88
91
97
98
100
102

103

103
104
111

118
124
128

134
147
160
163



Chapter I

Introduction and Motivation

1. Basic Concepts

In control theory, one is interested in governing the state of a system by
using controls. The best way to understand these three concepts is through
examples.

ExAMPLE I (A National Economy). The economy of a typical capitalistic
nation is a system made up in part of the population (as consumers and as
producers), companies, material goods, production facilities, cash and credit
available, and so on. The state of the system can be thought of as a massive
collection of data: wages and salaries, profits, losses, sales of goods and
services, investment, unemployment, welfare costs, the inflation rate, gold
and currency holdings, and foreign trade. The federal government can
influence the state of this system by using several controls, notably the
prime interest rate, taxation policy, and persuasion regarding wage and
price settlements.

ExaMPLE II (Water Storage and Supply). As early as the third century
B.C,, systems similar to that sketched in Figure 1 were being used in water
storage tanks. As the water level rises, the float will restrict the inlet flow;
all inlet flow will cease when the water reaches a certain height. If water
is withdrawn from the outlet at a certain rate then the float will tend to
adjust the inlet flow so as to maintain the water height in the tank. One
can think of the water in the tank along with the float, inlet, and outlet,
as a system. The control is the position of the float. The state at any instant
is a vector, consisting of the height of the water in the tank, the inlet rate
of flow and the outlet rate of flow. In this example, the state of the system
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Valve

Figure 1

(rather than an external observer) automatically sets the control (position
of the float) - this is an example of a feedback control system — the state is
“fed back” to the control mechanism, which adjusts without outside
influence.

We have chosen one example from economics and one from civil
engineering. We could just as well have chosen examples from biology,
economics, space flight, or several other fields, because the concepts of
system, state, and control are so general. In the exercises at the end of the
chapter we have given several more examples.

The essence of these examples is that in control theory we have a system
and we try to influence the state of the system through controls. The
dynamics of the system, that is, the manner in which the state changes
under the influence of the controls, can be very complicated in real-world
examples. In the case of a national economy, the dynamics is still a matter
of considerable research. Of course, there are many general principles for
a national economy - for example, raising the prime rate (a control) gen-
erally increases unemployment — but a detailed, accurate picture of the
dynamics of a national economy is very difficult. On the other hand, the
dynamics of the water storage system is relatively easy to describe. We
won’t do it here, since we are going to deal with an even simpler example
shortly.

There are two remaining concepts to be described, namely the constraints
on our controls, and the objective or target state(s) for our system. For a
national economy, there are several obvious constraints on our controls,
for example, taxation cannot be too excessive and the prime rate cannot
be negative. There are also objective or target states — ideally a government
wants a state of the economy with full employment, an inflation rate of
0%, low interest rates, and low taxes. In fact, they may have to settle for
a realistic target state with an unemployment rate less than 8%, inflation
less than 10%, moderate interest rates, and realistic tax rates. Any state
with these properties would do, so there are many target states. In fact,
the set of target states might vary with time, reflecting political and social
changes.
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In the water tank example, the constraint on the position of the stopper
is that it always floats at a fixed distance above the water level; also the
velocity with which the stopper can move is tied directly to the rate of
change of the water level height. The objective might be a pre-set water
height.

ExaMPLE 1 (The Rocket Car). This example will be used throughout this
monograph to motivate and illustrate concepts and results. The car runs
on rails on the level, has a mass of one, and is equipped with two rocket
engines, one on each end (Figure 2). The problem is to move the car from

| [TU | Uﬂ >p

0 P (t)
Figure 2

any given location to a fixed pre-assigned destination. For simplicity, we
place the destination at the origin and denote the position of the center of
the car by p(¢). If the car is at a position po at time ¢ =0, with velocity vo,
we want to fire the two engines according to some recipe (pattern, program)
which will have us arrive at p = 0 at rest (with velocity zero) at some instant
t;>0. We can take as our system the car plus its track; as the state we
take the two-vector x(¢) = (p(¢), p(¢)); the initial state (po, vo) is assumed
given. The physical reason for using a two-vector for the state is simple — we
want to know where we are and how fast we are going. Our target state
is (0, 0). A control u(t) is a real-valued function, representing the force on
the car due to firing either engine at time ¢ If we fire the right engine at
time t*, we will say the force is negative, if we fire the left engine we take
the force positive.

v(tY) —»
B =
hof Lof

I [
P () 0

Figure 3 (Moving to the Right) The Force Is to the Left When u(¢*)<0.

Then the dynamics of our system is given by Newton’s law F = ma,
which can be written as p(¢) = u(¢). This has the natural vector form

-[50) s0-[3 o]

There are constraints on the magnitude of u(t), based on the size of the
rocket motors and the amount of acceleration stress allowed on the car.
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A mathematically reasonable assumption is that u(¢) is measurable and
bounded, and we take our constraint to be |u(¢)|=1 for simplicity. Since
measurable functions can be quite pathological, we will often use classes
that are physically more reasonable, e.g., piecewise constant controls.

A given control function u(?) is a recipe for firing our engines. For

example

(t)_{+1, O0=t=1;
e A TL

tells us to fire the left engine at full force for one unit of time, then fire
the right engine at half force for two units of time.

If (po, vo) is the position of the car at r=0, we can integrate the
differential equation twice and then integrate by parts to get:

p(t) =p0+v0t+jo (t—nr)u(r) dr, p(t)= v0+IO u(r) dr.

Thus each choice of control, u(-), generates a response x[t]=x(t; xo, u(*)).
(We delete reference to the initial time ¢y, since we always take it to be
zero for simplicity. For systems not explicitly containing ¢, this is in fact
not a restriction.) We use u(-) to refer to the function «(¢), on its domain
of definition, as an entity. If the response x(¢; xo, u(+)) reaches the target
(0, 0) at some t; >0, then u(-) is a successful control. There might be no
such control or many. When there are several successful controls, the choice
of one over the other may be dictated by practicality, and/or by a cost or
performance criterion. For example, later on we shall consider the criteria:
(1) least time, (2) least energy expended, (3) least fuel expended. Our
control problem will then become an Optimal Control Problem.

2. Mathematical Formulation of the Control
Problem

We now give a precise mathematical formulation of the type of control
problem we will be discussing. Let m, n be natural numbers, and let R
stand for the real numbers. If x, y are column vectors in R", we denote
their ™™ components by x', y’ respectively. We define x” to be the transpose
of x, and introduce a dot product and two norms:

xy)=x"y=¥ x'y,

n .
xl=Z '] =0t
i
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If we need to square a scalar-valued function ¢(¢), we will write [T,
while x%(¢) will denote the second component of the vector-valued function
x(#) - in context the distinction will always be obvious. Let () denote the
unit cube in R™, i.e.,

Q={c|lceR™ |c'|=1,i=1,2,...,m}.
For t; =0, define
U,.[0, t1]={u(+)|u(t) € Q and u(-) measurable on [0, ]},

U = U,1>0 U,.[0, t1]. Unless explicitly stated otherwise, our controls u(-)
will always be assumed to belong to %,,.. This mildly cumbersome definition
of our admissible controls allows each control u(-) to have its own corres-
ponding interval of definition [0, #;(u)].

We assume that for each ¢ =0 we are given a target set 7(f) = R" where
T(¢) is a closed set. For most of this monograph we will take 7(¢)=0eR"
for simplicity. Nevertheless, general target sets are important, as we men-
tioned in the example of a national economy.

We assume that the dynamics of the system, that is, the evolution of
the state x(¢) under a given control u(¢), is determined by a vector ordinary
differential equation:

(1) x(2) =£(t, x(¢), u(?)),  x(to) =xo.
We will always assume that f(¢, x, u), af"/ax", af"/au" are all continuous
(,j=1,...,n;k=1,...,m) on [0,00) X R" x R™, although most results

are valid under weaker conditions. This assumption guarantees local
existence and uniqueness of the solution of (1) for a given u(-)€ %,..
Because u(*) is only assumed measurable and bounded, the right side of
the equation x=£(¢, x, u(¢)) is continuous in x but only measurable and
bounded in ¢ for each x. Therefore, solutions are understood to be absolutely
continuous functions that satisfy (1) almost everywhere. The solution of
(1) for a given u(-) will be called the response to u(-); we denote it by
x[t]=x(¢; xo, u(-)). The control problem is to determine those xo and u(:) e
%, such that the associated response satisfies x[#;]€ J(¢,) for some ¢, >0;
we then say that the control u(-) steers xo to the target.

If the control u(-) is defined on [0, ¢;) (#; =+00), it is not assumed that
the corresponding response extends to [0, #1); a given response x(; Xo, u(*))
may only exist on some subinterval of [0, ¢;). For example, consider the
scalar problem x =x%+u, xo=1. For uo(t)=0 (¢, = +00), the response is
x(t; 1, uo(+))=1/(1—1¢), which only exists on [0, 1). For linear equations,

) x() = A(O)x() + B(Hu(e),

with A(¢) and B(¢) continuous on [0, ¢;), solutions always extend to [0, #;).

Thus, our general control problem consists of a class of admissible
controls U, a vector differential equation (1) describing the dynamics of
our system, and a family of target sets I (¢). One basic problem is to describe



