Automata Theory: Machines and Languages

P
A

5

: 79613592

AUTOMATA THEORY:
MACHINES AND
LANGUAGES

RICHARD Y. KAIN
Associate Professor of Electrical Engineering
University of Minnesota

1
|
|

E7951692

McGraw-Hill Book Company

New York St. Louis San Francisco Diisseldorf ~ Johannesburg
Kuala Lumpur London Mexico Montreal New Delhi
Panama Rio de Janeiro Singapore Sydney Toronto

AUTOMATA THEORY: MACHINES AND LANGUAGES

Copyright © 1972 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. No part of this publica-
tion may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of the publisher.

Library of Congress Catalog Card Number 71-168453
07-033195-2
234567890DODO0O798765

This book was set in Times Roman, and printed and bound by
R. R. Donnelley & Sons, Company. The designer was Richard
Paul Kluga; the drawings were done by John Cordes, J. & R.
Technical Services, Inc. The editors were Richard F. Dojny and
Madelaine Eichberg. Matt Martino supervised production.

AUTOMATA THEORY: MACHINES AND LANGUAGES

McGraw-Hill computer science series

RICHARD W. HAMMING
Bell Telephone Laboratories

EDWARD A. FEIGENBAUM
Stanford University

Bell and Newell Computer Structures: Readings and Examples

Cole Introduction to Computing

Donovan Systems Programming

Gear Computer Organization and Programming

Givone Introduction to Switching Circuit Theory

Hamming Computers and Society

Hamming Introduction to Applied Numerical Analysis

Hellerman Digital Computer System Principles

Kain Automata Theory:.Machines and Languages

Kohavi Switching and Finite. Automata Theory

Liu Introduction to Combinatorial Mathematics

Nilsson Artificial Intelligence

Ralston Introduction to Programming and Computer Science

Rosen Programming Systems and Languages

Salton Automatic Information Organization and Retrieval

Stone Introductionto Computer Organization and Dcta Structures

Watson Timesharing System Design Concepts

Wegner Progrumming Languages, Information Structures, and
Machine Organization

to Helen

Preface

The two extremes in the spectrum of approaches to mathematical topics are:
(1) Proceed from definition to theorem with all the details written out and a
few examples interspersed for “motivation.” (2) Use discussion and some
arguments about the plausibility of the results. The former might be called
“exact mathematics,” the latter, “descriptive mathematics.” The latter ap-
proach has the advantage that one can omit the excruciating details of com-
plex proofs, on the assumption that the reader can fill in those details.

Most writing about automata theory has adopted the “exact” approach.
This approach tends to limit the audience to those having advanced mathe-
matical maturity. In those fields where a theory has not been widely applied,
practitioners who are neither extremely curious nor mathematically mature
tend to avoid taking the time to work through the exact descriptions. Thus
one consequence of the exact approach might be that applications of the
theory are not discovered as quickly as they would be if the theory were more
accessible to “outsiders.”

Three years ago the author taught some of the concepts of automata
theory to electrical engineering graduate students. This text evolved from

xii PREFACE

a set of notes written for that course. Because the majority of these students
were interested in practical applications, an exact mathematics approach to
the subject did not seem appropriate. Thus this text lies toward the descrip-
tive end of the spectrum. But a book cannot be completely descriptive.
Exactness is required especially in definitions and statements of the questions
being studied. Exact definitions can be made formally or informally. In
technical papers the formal approach is generally used. Therefore we often
state formal definitions. However, we sometimes give informal definitions
and leave the formulation of exact definitions to the problems.

In discussing some results we will omit tedious details. However, we
will include statements about the types of steps which are omitted from the
discussion but would be required in an exact proof. The discussion of each
result will develop the arguments until the result is intuitively plausible.
Readers are strongly encouraged to test each result with a simple example.
This exercise should help develop their intuition about why the result holds.
Some of the omitted steps are to be provided by the student as exercises in
understanding detailed proofs.

The major results are collected in Appendixes 2 and 3. Appendix 2
summarizes the results relating sets of languages to each other. The answers
to some unsolvability questions are summarized in Appendix 3. An an-
notated Bibliography, which includes some recent papers not specifically dis-
cussed in the text, is provided. Original sources are cited. References to the
Bibliography are cited at the end of each chapter, in the section titled Com-
ments. The reader is encouraged to read some of these papers. The an-
notations should be useful if one is looking for a specific result. Several
comprehensive bibliographies have appeared recently [Rahimi (1970) and
Wood (1970)]. They should be consulted if a more complete listing of the
literature is required.

History Mathematical theories are often developed without regard for any
applications they may have to problems which concern scientists and engi-
neers. Other mathematical theories developed as the need arose in practical
problems. Automata theory developed in both ways. Some of the theory
was developed in the 1930s, well before electronic digital computers were
built (in the 1940s). Most of the theory has been developed since 1953.
One possible application—attempting to explain natural languages (French,
English, etc.)—is a very complex problem. The motivation usually given for
a study of automata theory is that its problems relate to the problems of
translating the languages used to express algorithms for computing machines.
Perhaps people in other disciplines will develop new applications of automata
theory when they learn more about the ideas and results.

In this text we will emphasize the connection between machines and
(mathematical) linguistic models because it is my conviction that most results

PREFACE xiil

can be discovered from a machine interpretation of the problem. Also, many
people have more intuition about the behavior of a machine than they have
when they think in mathematical abstractions.

Some machine models are closely related to the data structures used in
software systems. There complex data structures can simplify the program-
mers’ ways of thinking about the problem. The criterion of simplicity is
very complex. A description may be simple if it is phrased in terms of com-
plex structures. If a person has a repertoire of structures to consider, he may
be able to find simpler descriptions of his problem by using one of the more
complex structures for the statement. In our discussion we will develop a
repertoire of machine structures.

We assume that the reader is not familiar with linguistic models but
that he does have some knowledge of finite-state machines. This background
can be provided by a course covering sequential circuit synthesis, or by mate-
rial supplementing Chapter 2. In Sections 2.1 and 2.2 we briefly review some
of the concepts from that area. We do not assume that the reader knows
anything about the relationships between machine models and linguistic
models. A knowledge of this relationship is important for intuition. We
will proceed somewhat slowly in the first six chapters, introducing linguistic
and machine models and proving results about their interrelationships. Oc-
casionally we prove other results, either in the course of becoming familiar
with the operation of a machine model or to relate the differing capabilities
of the models. As we introduce new models, we discuss some reasons why
they might be interesting, often from outside the context of automata theory.
Except for these insertions, the structure of each of Chapters 2 to 5 is similar:
A discussion of a deterministic machine model is followed by a definition of
acceptance. A result concerning the languages accepted by the deterministic
machines is proved. Then the nondeterministic model is introduced and its
relationship to the deterministic model is discussed. ~Finally, the relationship
between the nondeterministic model and a linguistic model is discussed.

After the relationship between machines and languages is fully develop-
ed, we proceed to results which are usually phrased in terms of the languages
alone. Even here we will use the machine formulations of the problems to
prove most of the results. This approach is taken, not to fulfill our predic-
tion that machine models are useful, but because the proofs of many of the
results can be obtained by drawing the proper picture of a machine structure.

Notice that we say that a proof is obtained by drawing a picture. This
again emphasizes that our approach is not to provide exact proofs in all the
detail which some might consider desirable. Rather, we proceed with the
exact proof until a point is reached when the reader should realize the struc-
ture of the proof, so that he could complete it if he wanted to. In Chapter 2
we discuss exactly what types of detail are omitted, and occasionally we in-
clude an exercise in which the reader should either provide a statement of

xiv PREFACE

what is missing or complete the missing parts. The latter type of exercise is
not illuminating in most cases; therefore solving one or two such exercises
should be sufficient for any reader.

Philosophy of proofs Most of the results which relate machines to lan-
guages are proved by simulations. The machine “mimics” the language,
and vice versa. Often some encoding of information is required. When the
simulations are complex, we describe them by first describing the coding to
be used and then showing a flow chart for the simulation algorithm. Often,
if the simulation is simple, we dispense with the flow chart and use a word
description of the algorithm. The reader is encouraged to try the simulations
on simple examples so that he can fully understand the reasons for the par-
ticular result obtained.

Chapter summaries Since the concepts of mathematical linguistics are
probably unfamiliar to most readers, we begin in Chapter 1 with a description
of the basic concepts, rules, and problems of mathematical linguistics. The
reader who is familiar with the work of Chomsky could skim this chapter.

In succeeding chapters we will develop models of differing complexity
and capability. We will show the relationship between *“hardware” descrip-
tions and linguistic descriptions of computations. OQur hardware descriptions
will be limited to descriptions of structures and types of components. We
will not discuss the detailed interconnections of any logical elements which
might be used in a particular realization of any machine. Transition tables,
flow charts, and similar techniques are used to describe the behavior of a
machine. We will show how the structural details of a machine can be found
from the description of any particular related language, and how the lan-
guage can be found from a knowledge of the structural details of the related
machine.

The simplest machine structure is the finite-state machine. In Chapter
2, we will see how these machines are related to particularly simple languages.
The relationships that we will consider later are easier to understand in
this simple context. Therefore we discuss some concepts in this familiar
context, even though they might have been introduced later.

Turing machines can perform complex calculations. In Chapter 3, we
will discuss the Turing machine model for computation and show how its
computations are related to some very general languages and mathematical
functions.

Many interesting machine models can be derived from the Turing model
by restricting the amounts of time or space used during the computation. In
Chapter 4, we discuss the linear-bounded automaton, the simplest of the
restricted Turing machines, and relate it to a class of languages.

Pushdown automata use a data structure very similar to some data

PREFACE it

structures used in compilers, some user programs, and one family of com-
puters. In Chapter 5, we discuss this model, relating it to languages similar
to ALGOL.

The machine models introduced in Chapters 2 to 5 are not sufficient to
model certain aspects of compilation problems. Modifications of the struc-
ture of a machine or the imposition of restrictions upon their operation can
change the capabilities of the machine. In Chapter 6, we discuss some of
these changes, which happen to be closely related to solutions for some com-
pilation problems. We also discuss some which fit into the hierarchy of
machine models in interesting ways.

The last three chapters discuss questions which are often phrased in
linguistic terms, though the proofs of the results can usually be made by find-
ing machine structures which are relevant to the question. For example, in
Chapter 7, we discuss certain mappings which can be applied to the sentences
of a language. By finding a machine which performs the mapping it is easy
to prove some properties of the results of the mapping. In Chapters 8 and 9,
we discuss some questions that might be asked about languages, such as
“Does this language contain any sentences?” After discussing the simple
cases—those in which the questions can be answered—in Chapter 8, we turn,
in Chapter 9, to those cases where an algorithm to answer the question in all
cases cannot exist. We close by showing the theoretically curious result that
there is an infinite hierarchy of classes of machines (and corresponding lan-
guages) about which many questions not only cannot be answered, but also
become increasingly difficult for the machines higher in the hierarchy.

Comments to readers The importance of working the problems and
carefully examining the examples cannot be overemphasized. It is very easy
to sit back and nod your head “‘yes” when proofs are discussed, but unless
you try the proof or try to perform the construction in an example, you may
not understand why some details are necessary. There are suggested
problems at the end of almost every section of the book. The difficulty of
these problems varies greatly. Some are simple exercises in executing algo-
rithms discussed in the section. These problems are placed toward the
beginning of each set of problems. Other problems are statements of ques-
tions that we believe are open at the present time. The latter problems are
marked (R). Some problems discuss results that will be cited in a later section
of the text. These problems are marked (P).

Comments on ordering The ordering of Chapters 1 to 5 should not be
changed, except that Chapter 5 can be moved to any point after Chapter 2
(except for the material in Sec. 5.7). The materials in Sections 5.8 and 6.4
can be omitted without loss of continuity. Chapters 6 and 7 should be
discussed only after the first five chapters.

xvi PREFACE

The material in Chapters 8 and 9 may be interspersed with the material
from Chapters 3, 4, and 5. For example, the definition and unsolvability
of the correspondence problem (Section 9.1) can be discussed after the halting
problem (Section 3.6). Then some of the unsolvable linguistic problems in
Chapter 9 can be discussed after Chapter 4 and the others after Chapter 5.
The solvable cases of these problems are discussed in Chapter 8, which can
be left for the mature student to read without class discussion.

Audience The more mathematical maturity the student has, the faster can
the material in this book be covered. At the graduate level for electrical
engineering students, this text can require one semester, or two quarters if the
students have previously studied the synthesis of sequential circuits. At the
junior or senior level, a year would be required, and the instructor should
supplement the text with some background material from the theory of finite-
state machines.

The Association for Computing Machinery has published some cur-
ricular suggestions for computer science programs. This text was planned
before these proposals were made, and does not exactly match any one of
them. This text material is covered in courses A1, A7, and 17 of ACM (1968)
and in courses 4, 5, and 6 of McNaughton (1968).

Acknowledgments It is difficult to single out those persons v/ho deserve
the most thanks for helping me, either directly or indirectly, with this effort.
I will cite a few individuals, knowing that others who have contributed must
be omitted. 'What follows is a chronological listing of some of my associates,
because this avoids the difficult task of ranking the persons, either by the
magnitude of their influence or alphabetically. I begin with Prof. David A.
Huffman, who had the patience to advise me during my thesis research (on a
problem unrelated to the present text) and caused me to pay more attention
to my writing. Next, my colleagues, past and present, Profs. F. C. Hennie,
D. J. Kuck, and C. L. Liu (alphabetically!) introduced me to much of this
material. Professor R. J. Collins, as department chairman, has provided a
congenial atmosphere in Minneapolis in which I could teach the course and
write the notes that formed the backbone of this text. My colleagues at the
University of Minnesota contributed to that atmosphere. One of them,
Prof. O. H. Ibarra, has checked my accuracy in many places, though any
errors are my own responsibility. My students have used class-note versions
of this material and have pointed out places where the discussions required
changes, contractions, or expansions.

Mrs. Sharon Nelson has typed several drafts of this manuscript with
extremely high accuracy. Without this help this book would not have been
completed as quickly or as easily.

My wife has been helpful with editing the text, but editing errors are

PREFACE xvii

my responsibility. Last, but far from least, my wife and children have put
up not only with my moments at the desk with pencil and paper, but also
with my daydreaming about how best to approach some of these topics.
Their only compensation has been to share some elation when a thought in
the shower clarified the problem.

Richard Y. Kain

Contents

Preface xi
Introduction 1

Chapter 1 Mathematical Linguistics 4

1.1 Linguistic Concepts 4

1.2 Language Specifications 7
1.3 A Classification of Languages
1.4 Derivation Trees 15

1.5 Tests for Membership 22

1.6 Transformational Grammars

1.7 Operations on Languages 26

1.8 Comments 26

Chapter 2 Finite-state Machines 28
2.1 The Model 29

7951592

2.2 Relationships between Machines and Languages 38

vii

viii

Chapter 3

Chapter 4

Chapter 5

CONTENTS

2.3 Finite-state Recognizers 42
2.3.1 Grammars from Finite-state Recognizers 43
2.3.2 Regular Expressions from Finite-state
Recognizers 48

2.4 Nondeterministic Finite-state Machines 56

2.5 Nondeterministic Finite-state Acceptors for Regular
Languages 64

2.6 Two-way Finite-state Acceptors 70

2.7 Comments 82

Turing Machines 83

3.1 Turing Machine Models 84
3.1.1 Turing’s Model 84
3.1.2 Quintuple Restrictions 90
3.1.3 Tape Restrictions 92

3.2 Turing Machine Acceptors 98

3.3 Recursive-language Descriptions of Turing Machine
Acceptors 101

3.4 Nondeterministic Turing Machines 107

3.5 Turing Machine Acceptors for Recursive
Languages 113

3.6 Unsolvable Problems 115
3.6.1 The Modified Busy-beaver Problem 116
3.6.2. The Halting Problem 117

3.7 There Are Recursive Languages Which Are Not Context-
sensitive Languages 119

3.8 Comments 121

Linear-bounded Automata 123

4.1 The Model 124

4.2 Linear-bounded Acceptors 129

4.3 The Sets Accepted by Linear-bounded Acceptors Are
Context-sensitive Languages 136

4.4 Nondeterministic Linear-bounded Acceptors for Context-
sensitive Languages 140

4.5 Comments 141

Pushdown Automata 142

5.1 The Model 143

5.2 Pushdown Acceptors 152

5.3 Context-free Language Descriptions of Pushdown
Acceptors 153

CONTENTS

Chapter 6

Chapter 7

Chapter 8

5.4
5.5

5.6

5.7

5.8
5.9

ix

Nondeterministic Pushdown Automata 161
Nondeterministic Pushdown Acceptors for Context-

free Languages 163

Closure Problems in Sets of Languages Accepted by Push-
down Acceptors 167

Deterministic Linear-bounded Acceptors for Context-free
Languages 173

Normal Forms for Context-free Grammars 177
Comments 182

Other Machine Models 183

6.1
6.2
6.3
6.4

6.5

Two-way Pushdown Automata 184

Pushdown Automata with Many Pushdown Tapes 186

Counter Machines 188

Stack Automata 195

6.4.1 Simulation of Linear-bounded Automata by Stack
Automata 198

6.4.2 Erasing Two-way Stack Acceptors Accept
Languages Which Are Not Context-sensitive 202

Comments 212

Operations on Languages 213

7.1
7.2
7.3

7.4
7.5
7.6
7.7

Generators 214

Balloon Automata 217

Finite-state Transducers 219

7.3.1 Complete Sequential Machines 221
7.3.2 Generalized Sequential Machines 223
7.3.3 Sequential Transducers 228

7.3.4 One-state Transducers 228
Pushdown Transducers 236

Rewriting Transducers 239

Intersections with Regular Sets 240
Comments 242

Solvable Linguistic Questions 243

8.1
8.2
8.3
8.4
8.5
8.6

Derivability 244

Equivalence 245

Emptiness, Completeness 246
Infiniteness 247

Ambiguity 248

Comments 249

X

Chapter 9 Unsolvable Linguistic Questions 250

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Post’s Correspondence Problem 251
Derivability 258

Emptiness, Completeness, Equivalence 258
Ambiguity 261

Inherent Ambiguity 262

An Infinite Hierarchy of Unsolvable Problems
Comments 268

Appendix 1 Abbreviations 269
Appendix 2 Relationships between Classes of Languages 271
Appendix 3 Solvability Results 275

Bibliography
Index 293

277

CONTENTS

266

