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PREFACE

This volume contains the formal notes of the short course on
wavelets conducted by the Institute for Computer Applications in
Science and Engineering (ICASE) and NASA Langley Research Cen-
ter (LaRC) during February 22-26, 1993. The purpose of the short
course was to give scientists and engineers a practical understanding
of wavelets: their applications as a diagnostic tool and their use as
basis functions to solve differential equations. The emphasis was on
providing as much as possible the practical knowledge which will en-
able applied scientists to evaluate objectively how useful these new
tools are in relation to their needs.

To this end, each chapter is written with the practical user in
mind. Instead of concentrating on the theoretical aspects of wavelets,
which can become quite incomprehensible to the uninitiated, the
authors strive to bring the subject down to a level where it can
possibly be appreciated by the research engineer. However. since
the field of wavelets has such a strong theoretical basis, we have
included a chapter on the theory of wavelets and operators, in which
the subject matter is rather theoretical.

This volume is divided into seven chapters. All the chapters were
contributed by the instructors of the shortcourse except the first one,
Introduction to Wavelets and their Application to Partial Differential
Equations, by Jameson of ICASE.

The objective of Chapter 1 is to introduce the reader to the
basic wavelet concepts related to the solution of partial differen-
tial equations. Details of wavelet theory and their construction are
skipped, and the reader is referred to the other articles in the volume.
Techniques discussed include the accuracy of the derivative operator
representation in wavelet bases, adaptive methods, and collocation
methods. In addition. an introduction to the recent incomplete the-
ory of Amiram Harten is included.

Chapter 2, authored by Strang, introduces the concept of mul-
tiresolution spaces which is crucial to the entire field of wavelets. He
then discusses the idea of filters, and how wavelet and scaling spaces
are related to the notion of high pass and low pass filters, Tespec-
tively. Next, he discusses the dilation equation which relates two
spaces at successive scales. This study is presented very intuitively
in the physical and the frequency domain.

Armed with this strong introduction, Tchamitchian in Chapter 3
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introduces the theoretical framework from which the various appli-
cations of wavelets can be understood. After setting the stage with
a historical background and some basic concepts, he explains how to
use the modulus and the phase of the wavelet coefficients to extract
information from time-dependent signals. This is followed by some
theoretical considerations on multiresolution analysis which comple-
ments nicely the presentation in Chapter 1. The second half of this
chapter is for the more theoretically inclined. Numerical analysts
and applied mathematicians are often confronted with the need to
invert operators. In Sections 8 and 9, Tchamitchian discusses spaces
of operators and explains the circumstances under which they can
be efficiently inverted. Finally, a theoretical discussion on wavelet
adaptation is presented. Adaptivity plays a very important role in
wavelet-based algorithms since the localization of scales in space and
time is then exploited fully.

In Chapter 4, Beylkin introduces fast numerical algorithms to
perform a variety of useful operations. These include the representa-
tion of differential operations in a wavelet basis, the compression of
operators, multiplication of operators, and the convolution of opera-
tors. The building blocks for these algorithms is the transformation
of operators into standard and nonstandard forms. Some practical
wavelet-based algorithms are given for standard operations, such as
a generalized inverse, the inverse of the second derivative operator,
and an algorithm to compute the square root. In preparation for the
need to solve nonlinear equations, Beylkin finally considers the rep-
resentation of nonlinear terms, particularly quadratic nonlinearities
using wavelet basis functions. '

In Chapter 5, Liandrat discusses the motivation for using wavelets
to solve PDE’s. After explaining the result of differential operators
on wavelets, he comments on the approximation of certain classes
of elliptic operators with wavelets. This serves as a starting point
from which adaptive algorithms are introduced. Examples based on
Burgers equation are presented using both adaptive and nonadaptive
methods.

Finally, Chapters 6 and 7 focus on the application of wavelets
to the study of experimental signals. In Chapter 6, Liandrat, start-
ing from the continuous wavelet, explains how to relate the wavelet
coefficient to the energy of a signal, and then, making use of the
redundancy in position and scale offered by wavelets, how to extract
local information from a signal, both in scale and time. The al-
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gorithms developed are then applied to experimental time histories
taken from a rotating disk experiment designed to study transition
to turbulence.

Fractals and multifractals are then discussed by Arneodo in Chap-
ter 7. The first half of the chapter is dedicated to a thorough review
of fractal and multifractal concepts, fractal measures, and fractal
functions. Different techniques are introduced to compute the singu-
larity spectrum of multifractal functions, and their deficiencies are
addressed. In the second half of the chapter, Arneodo explains how
wavelets can be used to characterize the singularities of functions.
They are shown to be well-suited to compute singularity spectrums,
both for positive and negative dimension. Wavelets are then used
to describe turbulent signals. Then the author’s theory of fractal
growth phenomena is unfolded and the role of wavelets in extracting
the inherent structure in these aggregates is presented. Finally, some
thoughts on the inverse fractal problem are advanced.

The editors would like to take the opportunity to thank all the
contributors for a job well done. It is a pleasure to acknowledge
the assistance of Emily Todd who coordinated the preliminary cor-
respondence for the Short Course as well as the collection and format
editing of the typescripts. We are also thankful to Jeff Robbins of
Oxford University Press for his cooperation and patience in bringing
out this volume.

Gordon Erlebacher
M. Yousuff Hussaini
Leland M. Jameson
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Erratum to Wavelets: Theory and Applications

Page one of this book was unfortunately omitted from the
bound edition, and replaced with a halftitle page. We hope
this causes no confusion. Page one listed the chapter title
and detailed chapter contents for L. M. Jameson’s chapter,
“Introduction to Wavelets and Their Application to Partial
Differential Equations” as shown in the Table of Contents,
page ix.



CONTENTS

Preface

1 Introduction to Wavelets and their Application
to Partial Differential Equations L.M. Jameson

Introduction and Motivation

Definition of Daubechies-Based Wavelets

Restriction to Finite Dimensions

Analysis and Data Compression

Daubechies Wavelets and CFD

The Wavelet-Optimized Finite Difference Method

Collocation Methods

Harten’s Multiresolution Method

Spline Wavelets and CFD

Wavelets Compared to Other Methods

© 00 N O U e W N

—
o

11 References
2 Wavelets from Filter Banks G. Strang

1 Introduction

2 The Idea of Multiresolution

3 Wavelets From Filters

4 Dilation Equation: Time Domain

5 Dilation Equation: Frequency Domain
6 References

3 Wavelets, Functions, and Operators
Ph. Tchamaitchian

1 Introduction: The Origin of Wavelets in
Mathematics

2 Basic Concepts

3 The Modulus of the Coefficients

4 The Phase of the Coeflicients

- N

-~

12
16
22
25
29
31
34

38
39
39
54
62

73
81

103
113



(2]

-~

9
10

CONTENTS

Multiresolution Analysis and Wavelet Bases
Operators

Calderén-Zygmund Operators and Characterization
of Functional Spaces

Calderén-Zygmund Operators, Matrices and
Functional Calculus

Adapting the Wavelets

References

4 Wavelets, Multiresolution Analysis and Fast
Numerical Algorithms G. Beylkin

© 0 N U R W N —

—
[e)

11

Introduction

Preliminary Remarks

The Non-Standard and Standard Forms
Compression of Operators

Differential Operators in Wavelet Bases.
Convolution Operators in Wavelet Bases
The Two-Point Boundary Value Problem
Multiplication of Operators

Fast Iterative Algorithms in Wavelet Bases
Product of Functions in Wavelet Bases

References

5 Some Wavelet Algorithms for Partial Differential
Equations J. Liandrat

DX N S W N -

Introduction

Approximation of Functions

Fast Algorithms

Differential Operators
Approximation of Elliptic Operators
Adaptive Algorithms

Numerical Implementation

Conclusion

121
134

135

146
164
178

182

184
188
200
209
215
225
231
238
244
251
259

263

265
265
270
272
279
291
295
312



CONTENTS

9 References

6 Some Wavelet Algorithms for Turbulence Analysis

and Modeling J. Liandrat

I Introduction

2 Analysis Algorithms of the Wavelet Plane
3 Application to Transition and Turbulence
4 Conclusion

5 References

313

316
317
319
332
346
347

7 Wavelet Analysis of Fractals: from the Mathematical

Concepts to Experimental Reality A. Arneodo

1 Introduction

2 The Multifractal Formalism

3 Singularity Detection and Processing with Wavelets
4

A Multifractal Formalism for Distributions Based
on Wavelets

5 Numerical and Experimental Applications of the
Wavelet Transform Modulus Maxima Method

6 Wavelet Analysis of Fully-Developed
Turbulence Data

7 Wavelet Analysis of Fractal Growth Phenomena

8 Prospects: Solution to the Inverse Fractal
Problem from Wavelet Analysis

9 References

Index

349
352

357

380

394

417

441
452

480
493

503



Wavelets



2 L.M. Jameson

1 Introduction and Motivation

This introduction to wavelets is written for the engineer and not for
the pure mathematician, and consequently, relies more on intuition
and calculus than on functional analysis. That is, technical mathe-
matical language is avoided and the emphasis is placed on how to use
wavelets as a tool to help one to get an answer to a physical prob-
lem. Of particular interest are the possible applications of wavelets
in computational fluid dynamics (CFD). For introductions to wavelet
methods which are slightly more theoretical, and consequently more
mathematically precise, as well as being in the context of functional
analysis, see the chapters by Liandrat and Tchamitchian in this vol-
ume.
The term wavelet refers to sets of functions of the form

Yasl(2) = lal V2220,
normalized by |a|~1/2, i.e., sets of functions formed by the dilations,
which are controlled by the positive real number a € R*, and trans-
lations which are controlled by the real number b € R, of a single
function ¥(z) often named the mother wavelet. Visually, the mother
wavelet appears as a local oscillation, or wave, in which most of the
energy of the oscillation is located in a narrow region in the physical
space. This localization in the physical space limits the localiza-
tion in the frequency or wavenumber domain due to the uncertainty
principle!. The dilation parameter a controls the width and rate of
this local oscillation and intuitively can be thought of controlling the
frequency of ¥g(z). The translation parameter b simply moves the
wavelet throughout the domain.

If the dilation and translation parameters a and b are chosen such
that @ = 27 and b = k27, where j and k are integers, then there exist
wavelets t¥(z) such that the set of functions

Wi(z) = 2792279z — k)

constitute an orthonormal basis of the space of functions or signals
in L?(IR), which have finite energy (Daubechies 1988 and Daubechies
1992), and as above, the two parameters, 7 and k£ can be varied for

'The uncertainty principle places a lower bound on the product of the variances
of a Fourier transform pair.
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analysis of local features of a given function. Note that as the wavelet
is stretched by increasing 7, say from 7 = 0 to j = 1, that the trans-
lation distance is, also, accordingly increased so that a translation of
size 29k when j = 0 becomes a translation of size 2k when 7 =1
These two degrees of freedom, j and k, give one the ability to resolve
features at a variety of scales by adjusting ;7 and at any location by
adjusting k. In a Fourier basis, by constrast, the basis functions are
a one-parameter family, (€**)", indexed by the frequency, n, and one
can effectively analyze global, periodic, smooth features by adjusting
this parameter n. A Fourier basis is, however, less conducive for the
analysis of localized oscillations or structure. -

Consider the following examples from CFD where wavelet meth-
ods have either already been shown to be effective or appear to be
promising areas for future research:

¢ Shock Wave Analysis: In CFD one often encounters dis-
continuities, or shock waves, either as an initial condition or
induced by the nonlinear terms of the governing equations. In
the physical space a discontinuous shock wave is highly local-
ized and contains information at infinitly small scales. When
viewed in either a Fourier or wavelet transform space, this in-
formation is distributed across all the basis functions which
cross the shock location. In the language of wavelet analysis,
an inner product of the function representing the shock wave
with the wavelet #](z) produces relatively large coefficients
when the translation parameter & places d)i(z) near the dis-
continuity. As the dilation parameter j produces wavelets on
increasingly fine scales, one can find the location and intensity
of the shock wave for edge detection (Mallat and Zhong 1992).
For solution to partial differential equations containing shocks
see Liandrat in this volume, Cai and Wang (1993), Bauer and
Jameson (1994).

* Aeroacoustics: In aeroacoustics, one of the goals is to follow
the motion of a localized wave or wavepacket for a long time.
Such a localized phenomenon is exactly the type of data which
a wavelet basis can compress effectively. In terms of coeffi-
cients of the inner product of the data with the wavelets zbf;(:c)
one would see that the coefficients are near zero away from the
oscillation which allows data compression in this region. Near
the oscillation, on the other hand, the inner product coefficients
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would be relatively large and would provide sufficient informa.-
tion to the equations which govern the wave motion. This type
of wavelet analysis is quite robust when used as a grid selection
mechanism which depends only on the local oscillation content
of the functions involved (Carpenter and Jameson, in prepara-
tion).

Turbulence: In turbulence, on the other hand, one has small-
scale and large scale structures which can appear in any region
of the domain, and a wavelet basis, due to existence of basis
functions at all scales, can be used to analyze effectively such
flows to aid in understanding the interaction of the various
scales (Farge 1992) and the chapter by Arneodo in this volume.

Combustion: In combustion it is critical to resolve the reac-
tion zone of a flame front in order to determine proper flame
speed. This reaction zone is typically very narrow and it, con-
sequently, requires very fine numerical resolution but only in a
small portion of the domain. An adaptive wavelet-based nu-
merical method can locate and resolve this flame front without
over-resolving the remainder of the domain. Furthermore, the
data compression, or grid refinement, is not explicely in terms
of the physics, but depends only on the existence of small-scale
and large-scale structure in the functions involved (Jameson,
Jackson and Lasseigne 1994).

From the above examples, it is clear that there is a need for a nu-

merical method in CFD which can efficiently work with information
which exists at many different scales in different regions of the do-
main, and a wavelet basis appears to be a very promising candidate
for such a method. The following section gives a more structured
introduction to Daubechies-based wavelets.

2 Definition of Daubechies-Based Wavelets

To define Daubechies-based wavelets (Daubechies 1988), consider the
two functions ¢(z), the scaling function, and ¥(z), the wavelet. The
scaling function is the solution of the dilation equation,

L-1
6(2) = V2 Y had(2z — k), (1)
k=0
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where ¢(z) is normalized [ ¢(z)dz = 1, and the wavelet ¥(z) is
defined in terms of the scaling function,

L-1
()= V2D grd(2z — k). (2)
k=0

e Note that in the chapter by Strang following this introduction
that the above coefficients hy and g4 defining the scaling func-
tion and the wavelet will be denoted by cx and di, respectively.
Other inconsistencies in notational use will be noted as they
are encountered.

One builds an orthonormal basis from ¢(z) and ¥(z) by dilating
and translating to get the following functions:

H(2) =2726(277z — k), (3)

and
Yi(z) = 27 59(27z — k), (4)

where j;k € ZL. j is the dilation parameter and k is the transla-
tion parameter. The coefficients H = {h¢}LZ! and G = {gx}Ezl) are
related by gx = (=1)*hp_4 for k = 0,...,L — 1. All wavelet prop-
erties are specified through the parameters H and G. If one’s data
is defined on a continuous domain such as f(z) where z € R is a
real number then one uses ¢} (z) and ] (z) to perform the wavelet
analysis. If, on the other hand, one’s data is defined on a discrete
domain such as f(i) where : € Z is an integer then the data is an-
alyzed, or filtered, with the coefficients H and G. In either case,
the scaling function ¢(z) and its defining coefficients H detect local-
ized low frequency information, i.e., they are low-pass filters (LPF),
and the wavelet v(z) and its defining coefficients G detect localized
high frequency information, i.e., they are high-pass filters (HPF).
Specifically, H and G are chosen so that dilations and translations
of the wavelet, ¢;(z), form an orthonormal basis of L%(IR) and so
that 1 (z) has M vanishing moments which determines the accuracy
(Strang 1992). In other words, 9] (z) will satisfy

n@m=[:ﬁ@wmmm, (5)



