. Aleksei A.Dezin

 Partial
:-leferentlal

“An Introduction to a General Theory
- of Linear Boundary Value Problems

Springer-Verlag




07
V3

U, L\'
Mo

2 REENBE3
Aleksei A. Dezin

Partial Differential Equations

An Introduction to a General Theory
of Linear Boundary Value Problems

Translated from the Russian
by Ralph P. Boas

WA

E8860863

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo



Aleksei A. Dezin
Steklov Mathematical Institute
ul. Vavilova 42, 117966 Moscow, USSR

Ralph P. Boas
Northwestern University
Evanston, IL 60201, USA

Title of the Russian original edition:
Obshchie veprosy teorii granichnykh zadach
Publisher Nauka, Moscow 1980

This volume is part of the Springer Series in Soviet Mathematics
Advisers: L.D. Faddeev (Leningrad), R.V. Gamkrelidze (Moscow)

Mathematics Subject Classification (1980):
35-01, 35F15, 35G15, 47B15

ISBN 3-540-16699-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-16699-8 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging in Publication Data
Dezin, Aleksei A. Partial differential equations.
(Springer series in Soviet mathematics)

1. Boundary value problems. 2. Differential equations, Partial.
I. Title. IL. Series.

QA379.D49 1987 515.3'53 87-9421
ISBN 0-387-16699-8 (U.S.)

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or
parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in
its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution

act of the German Copyright Law.
© Springer-Verlag Berlin Heidelberg 1987
Printed in Germany
Typesetting, printing and bookbinding:
Universitatsdruckerei H. Stiirtz AG, D-8700 Wiirzburg
2141/3140-543210



A.A.Dezin
Partial Differential Equations



Preface

Let me begin by explaining the meaning of the title of thls ,book. In :
essence, the book studies boundary value problems for linear, partlal differ-
ential equations in a finite domain in n-dimensional Euclidean space. The
problem that is investigated is the question of the dependence of the-nature
of the solvability of a given equation on the way in which the boundary
conditions are chosen, i.e. on the supplementary requirements which the
solution is to satisfy on specified parts of the boundary.

The branch of mathematical analysis dealing with the study of boundary
value problems for partial differential equations is often called mathematical
physics.

Classical courses in this subject usually consider quite restricted classes
of equations, for which the problems have an immediate physical context, or
generalizations of such problems.

With the expanding domain of application of mathematical methods at
the present time, there often arise problems connected with the study of
partial differential equations that do not belong to any of the classical types.
The elucidation of the correct formulation of these problems and the study
of the specific properties of the solutions of similar equations are closely
related to the study of questions of a general nature.

Among these are the following:

1. What accounts for the special position of the classical equations of
mathematical physics (and their generalizations) among all possible equa-
tions?

2. Can one find a reasonable (in some sense of this term) boundary value
problem for a randomly chosen equation, and if so, how?

3. What is the nature of the pathological phenomena that arise in the
case of incorrectly posed boundary value problems?

These questions, and similar ones, need, of course, to be clarified, and
are far from having complete answers. Nevertheless, it is clear that they
should not be assumed to be merely speculative. The ability to orient one’s
self in unconventional situations is often valuable for a mathematician or
physicist who is concerned with the solution of specific problems. For this
reason, the author has tried to make the book accessible to the widest
possible circle of readers.

Boundary value problems for partial differential equations constitute a
rich and complicated subject, and can be considered from very diverse
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points of view. The basic approach in this book is through the theory of
linear operators in Hilbert space. In certain constructions we also use spaces
with other structures, but the Hilbert space of functions of integrable square
is fundamental. In this connection, it is frequently most convenient to
formulate the solvability properties of a boundary value problem in terms of
the properties of the spectrum of an operator associated with the problem.

The first (introductory) chapter “Elements of spectral theory” is a brief
exposition of the necessary facts from the corresponding parts of functional
analysis.

In the second chapter we discuss general methods of associating a
boundary value problem with a linear operator on Hilbert space.

The generality of the questions enumerated above makes it necessary to
impose a number of quite stringent restrictions on the operators that we
shall study. The elucidation of correct formulations of problems and the
study of particular properties of their solutions for “nonclassical” equations
is conveniently begun by the consideration of idealized models, for example
by considering equations with constant coefficients, with part of the bound-
ary conditions replaced by the condition of periodicity. This allows the
application of some version of the method of separation of variables. In
essence, the main part of the book (Chapters IV-VI) is based on the use of
methods of this kind. By means of these we are led to the consideration of
special classes of operator equations for which it is possible to obtain
meaningful and rather complete results.

The reader can obtain additional details about the content of the book
by looking through it. Numerous general remarks are contained in the
introductory subsections, numbered “0”.

In conclusion, I offer the following additional remarks. If the books in
which the methods of functional analysis are applied to the study of bound-
ary value problems are conditionally divided into two groups:

1) treatises on functional analysis in which differential operators are
studied as concrete examples;

2) treatises on the theory of partial differential equations in which
functional analysis is one of the methods employed;
then, putting this monograph into the second group, I would emphasize that
my intention is that the basic theme should be an exposition of the mecha-
nism of applying the general concepts of functional analysis to the study of
definite classes of specific classical entities.

In conclusion, I take this opportunity to thank Professor Sh.A. Alimov
for reading the manuscript and making many valuable comments.

A.A. Dezin



Preface to the English Edition

The main theme of this book is the study of how the solvability of a
given linear partial differential equation depends on the choice of the
boundary conditions; the principal methods are those of functional analysis.
I feel that this theme deserves more attention than it usually receives.
Rather than proving many general theorems, I have presented numerous
special cases, for which more or less complete results are attainable, in order
to illustrate various kinds of results. I hope that these examples will help the
reader acquire enough intuition so that they can analyze the particular
problems that arise in their own work. For a fuller discussion of the
objectives of the book, the reader is referred to the preface to the Russian
edition (above).

Shortly after the publication of the first edition, an approach was disco-
vered to many of the problems that are discussed in the main part of the
book; it is known as the model-operator method. It has become clear that
with this approach one can analyze a large class of diverse problems, both
from a unified point of view and in simplified formulations. A number of
results in this direction are outlined in an appendix that contains brief
summaries, kindly provided by Professor Boas, of some recent papers.

In conclusion, I want to express my gratitude to Professor Boas and to
Springer-Verlag for producing this English edition, which should make the
book accessible to a wider circle of readers.

Moscow, December 1986 A.A. Dezin



To the Reader

The book is divided into chapters; the chapters, into sections; the
sections, into subsections. Formulas, theorems, and statements are num-
bered within each section. For a reference within a section, the number is
given; for a reference to a different section of the same chapter, also the
section (or section and subsection). Otherwise the chapter is also given.

Numbers in square brackets are references to the corresponding books
or papers in the bibliography. A reference does not imply that the book or
paper cited is the only (or principal) source of the information in question.

The “Halmos symbol” [] marking the end of a proof (possibly only an
outline), or to emphasize its absence, is not used altogether systematically.
In some cases where no confusion will result, it is omitted.

Definitions are not always set off in separate paragraphs. Frequently
they are run into the text. Definitions of concepts are printed in italics.
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Chapter I
Elements of Spectral Theory

§0. Introductory Remarks

This chapter is introductory in nature. It contains the basic facts from
the theory of linear operators that are fundamental for what follows. The
contents of the chapter are more than amply covered by standard text-
books, for example those listed in the bibliography. Exact references are, in
some cases, given in the text.

The reasons for including such a chapter in the book are evident: it is
always convenient to have a brief summary of the information that is
assumed to be known. Such a summary should eliminate the possibility of
terminological discrepancies and serve the inexperienced reader as a com-
pass in navigating through the ocean of propositions formed by the contents
of the often terrifying volume of courses in functional analysis.

It is rather more difficult to justify the presence (or absence) of proofs.
This is all the more true since the proofs that are given are sometimes quite
detailed, whereas others are in the nature of hints. It is clear that the
presence of proofs always gives a plan for more complete ones. Moreover,
sometimes a proof lets us make a remark that seems to the author to be
important; sometimes, it indicates a useful technical device; and sometimes
the aim of a proof is simply to lighten the task of a reader who really wants
everything to be proved.

Among the essential remarks mentioned above there belongs a mention
of the details of our point of view, which is dictated by the fundamental
subject of our study: the boundary value problem. Not all the facts enu-
merated in this chapter are used to the same extent. Some are presented
only to complete the picture which will serve as general background to later
constructions.

There are no examples in this chapter. The whole remainder of the
discussion will serve as a set of examples for it.

§ 1. Basic Definitions

1.0. Introductory Remarks. The natural framework for the “abstract”
spectral theory of operators, i.e. a theory that does not specify the way in
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which the operators are defined, is a complex Banach space. Although we
shall be mainly concerned with a specific function space, namely Hilbert
space, it is natural to present some facts in a more general setting. More-
over, it is just in this setting that they are presented in the standard
treatises.

It should be noted that when one is concerned with “spectral theory”
rather than “spectral theory of operators,” contemporary references take as
fundamental object an element of a certain Banach algebra. Hence the point
of view of the present chapter may appear not to be abstract at all, but
rather “concrete.”

1.1. Fundamental Structure. If we start from the initial concepts of
“naive set theory” - sets and relations, and follow the chain of axioms that
enter into the definition of a Banach space, we obtain the following picture.

An Abelian group is a nonempty set G of elements a,b,c,..., with a
binary operation “+” that associates with every pair a, b of elements of G a
unique element ceG (a+b=c). The operation “+” is subject to the follow-
ing additional requirements: it is associative ((@+b)+c=a+(b+c)), com-
mutative (a+b=b+a); there is a neutral element 0 (¢ +0=a); and for every
aeG there is an inverse element —a such that a+(—a)=0.

A complex linear space A" is an Abelian group in which there is defined
a multiplication of elements a,b,c,... by complex numbers o, 8,7, ..., such
that the following conditions are satisfied:

a(a+b)=0a+ab, (x+fla=aa+pa,
(xp)a=a(pa), la=a.

If we replace the complex numbers by the real numbers, we obtain the
definition of a real linear space.

We emphasize that in restricting the class of numbers o, f,7, ... in these
definitions we are considering our objects from the point of view of analysis.
An algebraist would have allowed the elements «, f5, 7, ... in the definition to
belong to an arbitrary field #

A norm is a nonnegative real function |al|, defined on elements ae.#
and satisfying the following conditions:

1) |la] =0 implies a =0,

2) |aall =|al llall,

3) la+bl <llall+bl.

A space .4 that has a norm is called a normed linear space (the qualifier
“complex” or “real” will usually be omitted).

A sequence {x,} of elements of #" is a Cauchy sequence if for every ¢>0
there is an integer N(¢) such that the condition m,n>N implies |x,—x,,]|
<e. A space A is complete if for every Cauchy sequence there is an
element xe.#" to which this sequence converges (in the ordinary sense).
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A complete normed linear space is called a Banach space (B-space).

In a linear space the concept of linear dependence is defined in the usual
way, and consequently so is the concept of dimension: the largest number of
linearly independent elements. Although the spaces in which we are in-
terested will usually be infinite-dimensional, we do not include infinite
dimensionality in the definition of a B-space. Thus the set of complex
numbers with the modulus as norm is an example of a one-dimensional B-
space.

An incomplete normed linear space is called a pre-Banach space. Every
pre-Banach space can be extended to a Banach space by the abstract
process of adjoining the limits of the convergent sequences ([12], Chap. II,
§3.4).

Every B-space is simultaneously both a metric space and a topological
space, but this aspect is without interest for our purposes.

A complex linear space 4" is a pre-Hilbert space if to every ordered pair
of elements a,b there is assigned a complex number (a,b), their scalar
product, satisfying the following requirements:

1) (a,a) =0 and (a, a)=0 implies a =0;

2) (a,b)=(b, a) (the bar denotes the complex conjugate);

3) (a+b,c)=(a,c)+(b,c);

4) (ea,b)=o(a,b).

If in a pre-Hilbert space we set ||al|? =(a, a), it follows immediately from
the classical Bunyakovsky-Schwarz inequality

(@, b) < all |bl

that the function |a| is a norm, and therefore a pre-Hilbert space is
automatically a pre-Banach space.
The scalar product is continuous: lim(q,, b)=(lim q,, b).
k k

A complete normed pre-Hilbert space is called a Hilbert space. Every
Hilbert space is a B-space. In order for it to be possible to introduce a
scalar product that generates a norm in a Banach space, certain special
requirements have to be satisfied ([21], Chap.1, §5; in that book the term
“pre-Hilbert space” has a quite different meaning).

1.2. Special Subsets. A subset %4’ of a Banach space # which is in turn a
B-space with the norm induced by then norm of # is called a subspace of
2.

We are often led to encounter a subset 4’ % which is a linear subspace
but does not satisfy the condition of completeness in the norm of #. We
call such a subset a linear manifold.

The simplest way to form a linear manifold in 4 is to consider the linear
span of a given subset .# =4, i.e. the set of all finite linear combinations of
elements of .#. If %' also contains all limit elements, i.e. limits (in the norm
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of %) of sequences of elements of .#, then the corresponding closed linear
span is a subspace of 4. This distinction naturally occurs only when .# has
an infinite number of linearly independent elements.

A subset 2c % is dense in 4 if its closure is 4. A set .# of elements is
complete in % if the linear span of .# is dense. A complete set {e,} of
elements of 4 (finite or countable) forms a basis if, in the representation of
each element, x=) x,e,, the numbers x, are uniquely determined. Al-

k

though there are many important examples of B-spaces without countable
bases, we shall not encounter them here.

Turning now to a Hilbert space of more particular interest to us, we first
notice the following fundamental proposition.

Lemma (on orthogonal expansion). Let .#' be a linear manifold in the
Hilbert space #, and let A" be the set of elements peA# such that (¢, y)=0
for every yed'. Then N is a subspace of H, and each xe A has a unique
representation of the form

X=X_4®X, (1

where x , e (the closure of M') and x €N

Remark. The subspace 4 is called the orthogonal complement of .4 (or
M), and (1) is the orthogonal expansion of x. The symbol @ indicates this,
and is also used in the notation # =4 @ .N.

Proof of the lemma. We evidently need to consider only the case when
A is infinite. In that case, that 4" is a subspace follows immediately from
the properties of the scalar product.

If xe#, the proposition is trivial. Let x¢.# and let inf|x—y,|=d.
yeM
Then there is a sequence {y,} such that |x—y| =d,—»d as n—oo. Let us

show that the sequence {y,} converges, i.e. the infimum is attained for some
element ye.#. Using the definition of the norm in # as the square of the
scalar product, we obtain

A2+ d2 =X =y, 12 + 1% =y, 1> =3(12% = Yo = Yo 1> + | Y = Yull?)- (2)
Since
2

2“x—y'"T+y" >242,

we have the inequality
dy+d5—2d* 25|y, —ll%,

which shows that the sequence {y,} converges to some ye.Z.
Let us show that x —ye.#. In fact, the function F of the real parameter ¢,

Fity=lx—y+tz|?
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must have, for an arbitrarily given element ze.#, a minimum for =0, i.e.
F'(0)=0. Hence (considering the pair z, iz of vectors) we conclude that
(x—y,2z)=0 for every ze.#. Setting x ,=y, x,=x—y, we obtain (1). The
uniqueness of the representation is evident. []

The preceding proof can be instructively “geometrized” (in an especially
intuitive way in a real Hilbert space). As is easily seen, the discussion
remains valid if the space .# is replaced by any closed convex set (one for
which y,, y,e# implies (y, +y,)/2e.#). The element x —y is said to be the
perpendicular from x to .#; the chain of inequalities (2) uses the classical
relationship between a diagonal and a side of a parallelogram. The existence
of this property is a characteristic property of the Hilbert norm mentioned
above. The nontrivial verification of the existence of the element y for which
the infimum is attained is a consequence of the infinite dimensionality.

From the lemma we at once obtain the following corollary.

Corollary. A set M < # is complete if and only if the equation (y,x)=0
for every ye# implies x=0. [

We can apply the classical process of orthogonalization to any countable
basis {¢,} in Hilbert space, and thereby obtain an orthonormal basis {e,}
that satisfies the conditions (e, ¢;)=4,; (the Kronecker symbol). Then the
coefficients of the expansion x=) x, ¢, of an element xe# are determined

k

by the equations x, =(x, e,). An orthonormal system {¢,} is a basis if and
only if
Ix12 =Y I(x, el 3)
k

for every xe /.

Remark. By using the availability of a countable orthonormal basis in #
we can obtain a shorter (but less instructive) proof of the lemma on
orthogonal expansions.

If {¢,} is a basis in .#, there exists a uniquely determined system of
elements {y,} such that (¢, ;) =4,;. The system {i,} is also a basis, and is
said to be biorthogonal to {¢,}. For a pair of conjugate biorthogonal bases
the coefficients of the expansions x=) x, ¢, and y=)_ y, ¥, are determined

k

k
by the formulas x, =(x, ¥,), y, =¥, @,).
A basis {¢,} in H# is called a Riesz basis if there are constants c,, ¢,
such that, for every xe# that is represented in the form x=) x, ¢,, we
have the inequalities k

eyl <lx|?<c, Y Ix /% 4
k k

Inequalities (4) serve as a replacement for (3) in cases when the latter is not
available.



