Aleksei A. Dezin # Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems D532 8860863 # Aleksei A. Dezin # Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems Translated from the Russian by Ralph P. Boas E8860863 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo #### Aleksei A. Dezin Steklov Mathematical Institute ul. Vavilova 42, 117966 Moscow, USSR Ralph P. Boas Northwestern University Evanston, IL 60201, USA Title of the Russian original edition: Obshchie veprosy teorii granichnykh zadach Publisher Nauka, Moscow 1980 This volume is part of the *Springer Series in Soviet Mathematics* Advisers: L.D. Faddeev (Leningrad), R.V. Gamkrelidze (Moscow) Mathematics Subject Classification (1980): 35-01, 35F15, 35G15, 47B15 ISBN 3-540-16699-8 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-16699-8 Springer-Verlag New York Berlin Heidelberg Library of Congress Cataloging in Publication Data Dezin, Aleksei A. Partial differential equations. (Springer series in Soviet mathematics) 1. Boundary value problems. 2. Differential equations, Partial. I. Title. II. Series. QA379.D49 1987 515.3'53 87-9421 ISBN 0-387-16699-8 (U.S.) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1987 Printed in Germany Typesetting, printing and bookbinding: Universitätsdruckerei H. Stürtz AG, D-8700 Würzburg 2141/3140-543210 # A.A. Dezin Partial Differential Equations #### Preface Let me begin by explaining the meaning of the title of this book. In essence, the book studies boundary value problems for linear partial differential equations in a finite domain in *n*-dimensional Euclidean space. The problem that is investigated is the question of the dependence of the nature of the solvability of a given equation on the way in which the boundary conditions are chosen, i.e. on the supplementary requirements which the solution is to satisfy on specified parts of the boundary. The branch of mathematical analysis dealing with the study of boundary value problems for partial differential equations is often called mathematical physics. Classical courses in this subject usually consider quite restricted classes of equations, for which the problems have an immediate physical context, or generalizations of such problems. With the expanding domain of application of mathematical methods at the present time, there often arise problems connected with the study of partial differential equations that do not belong to any of the classical types. The elucidation of the correct formulation of these problems and the study of the specific properties of the solutions of similar equations are closely related to the study of questions of a general nature. Among these are the following: - 1. What accounts for the special position of the classical equations of mathematical physics (and their generalizations) among all possible equations? - 2. Can one find a reasonable (in some sense of this term) boundary value problem for a randomly chosen equation, and if so, how? 3. What is the nature of the pathological phenomena that arise in the case of incorrectly posed boundary value problems? These questions, and similar ones, need, of course, to be clarified, and are far from having complete answers. Nevertheless, it is clear that they should not be assumed to be merely speculative. The ability to orient one's self in unconventional situations is often valuable for a mathematician or physicist who is concerned with the solution of specific problems. For this reason, the author has tried to make the book accessible to the widest possible circle of readers. Boundary value problems for partial differential equations constitute a rich and complicated subject, and can be considered from very diverse VI Preface points of view. The basic approach in this book is through the theory of linear operators in Hilbert space. In certain constructions we also use spaces with other structures, but the Hilbert space of functions of integrable square is fundamental. In this connection, it is frequently most convenient to formulate the solvability properties of a boundary value problem in terms of the properties of the spectrum of an operator associated with the problem. The first (introductory) chapter "Elements of spectral theory" is a brief exposition of the necessary facts from the corresponding parts of functional analysis. In the second chapter we discuss general methods of associating a boundary value problem with a linear operator on Hilbert space. The generality of the questions enumerated above makes it necessary to impose a number of quite stringent restrictions on the operators that we shall study. The elucidation of correct formulations of problems and the study of particular properties of their solutions for "nonclassical" equations is conveniently begun by the consideration of idealized models, for example by considering equations with constant coefficients, with part of the boundary conditions replaced by the condition of periodicity. This allows the application of some version of the method of separation of variables. In essence, the main part of the book (Chapters IV–VI) is based on the use of methods of this kind. By means of these we are led to the consideration of special classes of operator equations for which it is possible to obtain meaningful and rather complete results. The reader can obtain additional details about the content of the book by looking through it. Numerous general remarks are contained in the introductory subsections, numbered "0". In conclusion, I offer the following additional remarks. If the books in which the methods of functional analysis are applied to the study of boundary value problems are conditionally divided into two groups: 1) treatises on functional analysis in which differential operators are studied as concrete examples; 2) treatises on the theory of partial differential equations in which functional analysis is one of the methods employed; then, putting this monograph into the second group, I would emphasize that my intention is that the basic theme should be an exposition of the mechanism of applying the general concepts of functional analysis to the study of definite classes of specific classical entities. In conclusion, I take this opportunity to thank Professor Sh.A. Alimov for reading the manuscript and making many valuable comments. A.A. Dezin ### Preface to the English Edition The main theme of this book is the study of how the solvability of a given linear partial differential equation depends on the choice of the boundary conditions; the principal methods are those of functional analysis. I feel that this theme deserves more attention than it usually receives. Rather than proving many general theorems, I have presented numerous special cases, for which more or less complete results are attainable, in order to illustrate various kinds of results. I hope that these examples will help the reader acquire enough intuition so that they can analyze the particular problems that arise in their own work. For a fuller discussion of the objectives of the book, the reader is referred to the preface to the Russian edition (above). Shortly after the publication of the first edition, an approach was discovered to many of the problems that are discussed in the main part of the book; it is known as the model-operator method. It has become clear that with this approach one can analyze a large class of diverse problems, both from a unified point of view and in simplified formulations. A number of results in this direction are outlined in an appendix that contains brief summaries, kindly provided by Professor Boas, of some recent papers. In conclusion, I want to express my gratitude to Professor Boas and to Springer-Verlag for producing this English edition, which should make the book accessible to a wider circle of readers. Moscow, December 1986 A.A. Dezin #### To the Reader The book is divided into chapters; the chapters, into sections; the sections, into subsections. Formulas, theorems, and statements are numbered within each section. For a reference within a section, the number is given; for a reference to a different section of the same chapter, also the section (or section and subsection). Otherwise the chapter is also given. Numbers in square brackets are references to the corresponding books or papers in the bibliography. A reference does not imply that the book or paper cited is the only (or principal) source of the information in question. The "Halmos symbol" \square marking the end of a proof (possibly only an outline), or to emphasize its absence, is not used altogether systematically. In some cases where no confusion will result, it is omitted. Definitions are not always set off in separate paragraphs. Frequently they are run into the text. Definitions of concepts are printed in italics. # Table of Contents | Chapter I. Elements of Spectral Theory | 1 | |--|----| | § 0. Introductory Remarks | 1 | | § 1. Basic Definitions | 1 | | 1.0. Introductory Remarks | 1 | | 1.1. Fundamental Structure | 2 | | 1.2. Special Subsets | 3 | | 1.3. Operators | 6 | | 1.4. Functionals | 8 | | § 2. The Spectrum of an Operator | 9 | | 2.0. Preliminary Remarks | 9 | | 2.1. Basic Definitions | 11 | | 2.2. Functions of an Operator | 12 | | 2.3. Connection Between the Spectra of an Operator and its | | | Inverse | 14 | | § 3. Special Classes of Operators | 14 | | 3.0. Preliminary Remarks | 14 | | 3.1. CC Operator s. Definition and Basic Properties | 15 | | 3.2. CC Operators. Fredholm-Riesz Theory | 17 | | 3.3. Selfadjoint CC Operators | 19 | | 3.4. Selfadjoint, Normal, and Unitary Operators | 21 | | 3.5. Some Additional Conventions | 22 | | Chapter II. Function Spaces and Operators Generated by | | | Differentiation | 24 | | §0. Introductory Remarks | 24 | | § 1. The Space $\mathbb{H}(V)$ | 24 | | §2. Differential Operations and the Maximal Operator | 27 | | § 3. The Minimal Operator and Proper Operators | 29 | | 3.1. The Minimal Operator | 29 | | 3.2. Transposed Operations and Adjoint Operators | 29 | | | 30 | | 3.3. Existence of Proper Operators | 34 | | §4. Weak and Strong Extensions of Differential Operations | 34 | | 4.0. Preliminary Remarks | 34 | | 4.1. Basic Definitions | 37 | | § 5. Averaging Operators | 37 | | 5.0. Preliminary Remarks | 3/ | | 5.1. Averaging on the Line | . 37 | |---|------------------| | 5.2. Averaging in a Multidimensional Domain | | | 5.3. Averaging and the Differentiation Operation | . 42 | | 5.4. The Friedrichs Lemma | | | §6. The Identity of Weak and Strong Extensions of Differentia | | | Operations | . 44 | | 6.1. The Case of Mainly Constant Coefficients | | | 6.3. Some Examples | | | 6.4. Equivalence of Weak and Strong Extensions as a Corollary | , 4 / | | of the Unique Solvability of Problems | | | 6.5. The Case of an Ordinary Differential Operator | | | §7. W Spaces | | | 7.0. Introductory Remarks | | | 7.1. Weak and Strong Generalized Derivatives | . 52 | | 7.2. Spaces W^m , \dot{W}^m , and Embedding Theorems | | | Chapter III. Ordinary Differential Operators | 55 | | §0. Introductory Remarks | . 55 | | §1. Description of Proper Operators for $n=1$ | | | 1.1. Operators Generated by Cauchy Conditions | | | 1.2. Description of Proper Operators | | | § 2. The Ordinary Differential Operator of the First Order | | | § 3. Birkhoff Theory | | | §4. Supplementary Remarks | | | 4.1. General Remarks | | | 4.2. Supplementary Remarks Concerning Ordinary Differentia | | | Operations | | | Chapter IV. Model Operators | 69 | | §0. Introductory Remarks | . 69 | | § 1. Tensor Products and Model Operators | . 69 | | 1.1. Tensor Products of Hilbert Spaces | | | 1.2. Model Operators | | | §2. Operators on the <i>n</i> -Dimensional Torus | | | 2.1. Definition of Π -Operators and their Basic Properties | | | 2.2. Some Further Properties of Π -Operators | . 75 | | 2.3. П-Operators Generated by Some Classical Differentia | | | Operations | . 19 | | Chapter V. First-Order Operator Equations | | | §0. Introductory Remarks | . 81 | | § 1. The Operator $D_t - A$; The Spectrum | | | § 2. The Operator $D_t - A$; Special Boundary Conditions | . 87 | | § 3. The Operator $D_t - \mathbf{A}$; Classification | . 90 | | § 5. Differential Properties of the Solutions of Operator Equations, | 95 | |--|----------------------------| | and Related Questions | | | Chapter VI. Operator Equations of Higher Order |)5 | | § 0. Introductory Remarks § 1. Second-Order Operator Equations 1.0. Preparatory Remarks 1.1. Elementary Formulas 1.2. A General Method 1.3. The Cauchy Problem 1.4. Existence of Proper Operators 1.5. The Dirichlet Problem 1.6. Using the Standard Conditions 1.7. A Concluding Remark § 2. Operator Equations of Higher Order (m>2) 2.0. Preparatory Remarks 2.1. Binomial Equations 2.2. The General Operator Equation 11 | 06077799 | | Chapter VII. General Existence Theorems for Proper Operators 11 | 9 | | § 0. Introductory Remarks § 1. Lemma on Restriction of a Domain § 2. Existence Theorem for a Proper Operator § 3. Description of Proper Operators in a Parallelepiped 3.0. Preparatory Remarks 3.1. Description of a Proper Operator by an Appropriate Choice of Basis 3.2. Existence of a Correctly Chosen Basis 3.3. The Final Result 12 | .9
20
24
24
24 | | Chapter VIII. A Special Operational Calculus | | | \$0. Introductory Remarks | 1 2 7 | | Concluding Remarks | | | Appendix 1. On Some Systems of Equations Containing a Small Parameter | 6 | | \$ 1. Formulation of the Problem | 8 | | Appendix 2. Further Developments | | | | | | | | | | | | | | ٠ | × | ٠ | ÷ | × | | | | 155 | |----------------------------------|----|----|-----|-----|--|---|--|--|--|--|--|--|--|---|---|---|---|---|--|--|--|-----| | Reference | es | | , | | | ÷ | | | | | | | | | × | | ÷ | × | | | | 159 | | Index | | | × | ٠ | | | | | | | | | | | | | | × | | | | 161 | | Index of | S | yn | ıbo | ols | | | | | | | | | | | | | | ÷ | | | | 165 | # Chapter I Elements of Spectral Theory #### §0. Introductory Remarks This chapter is introductory in nature. It contains the basic facts from the theory of linear operators that are fundamental for what follows. The contents of the chapter are more than amply covered by standard textbooks, for example those listed in the bibliography. Exact references are, in some cases, given in the text. The reasons for including such a chapter in the book are evident: it is always convenient to have a brief summary of the information that is assumed to be known. Such a summary should eliminate the possibility of terminological discrepancies and serve the inexperienced reader as a compass in navigating through the ocean of propositions formed by the contents of the often terrifying volume of courses in functional analysis. It is rather more difficult to justify the presence (or absence) of proofs. This is all the more true since the proofs that are given are sometimes quite detailed, whereas others are in the nature of hints. It is clear that the presence of proofs always gives a plan for more complete ones. Moreover, sometimes a proof lets us make a remark that seems to the author to be important; sometimes, it indicates a useful technical device; and sometimes the aim of a proof is simply to lighten the task of a reader who really wants everything to be proved. Among the essential remarks mentioned above there belongs a mention of the details of our point of view, which is dictated by the fundamental subject of our study: the boundary value problem. Not all the facts enumerated in this chapter are used to the same extent. Some are presented only to complete the picture which will serve as general background to later constructions. There are no examples in this chapter. The whole remainder of the discussion will serve as a set of examples for it. #### §1. Basic Definitions 1.0. Introductory Remarks. The natural framework for the "abstract" spectral theory of operators, i.e. a theory that does not specify the way in which the operators are defined, is a complex Banach space. Although we shall be mainly concerned with a specific function space, namely Hilbert space, it is natural to present some facts in a more general setting. Moreover, it is just in this setting that they are presented in the standard treatises. It should be noted that when one is concerned with "spectral theory" rather than "spectral theory of operators," contemporary references take as fundamental object an element of a certain Banach algebra. Hence the point of view of the present chapter may appear not to be abstract at all, but rather "concrete." 1.1. Fundamental Structure. If we start from the initial concepts of "naive set theory" – sets and relations, and follow the chain of axioms that enter into the definition of a Banach space, we obtain the following picture. An Abelian group is a nonempty set G of elements a, b, c, \ldots , with a binary operation "+" that associates with every pair a, b of elements of G a unique element $c \in G$ (a+b=c). The operation "+" is subject to the following additional requirements: it is associative ((a+b)+c=a+(b+c)), commutative (a+b=b+a); there is a neutral element (a+b=a); and for every $a \in G$ there is an inverse element -a such that a+(-a)=0. A *complex linear space* \mathcal{K} is an Abelian group in which there is defined a multiplication of elements a, b, c, ... by complex numbers $\alpha, \beta, \gamma, ...$, such that the following conditions are satisfied: $$\alpha(a+b) = \alpha a + \alpha b$$, $(\alpha + \beta) a = \alpha a + \beta a$, $(\alpha \beta) a = \alpha(\beta a)$, $1 a = a$. If we replace the complex numbers by the real numbers, we obtain the definition of a *real* linear space. We emphasize that in restricting the class of *numbers* α , β , γ , ... in these definitions we are considering our objects from the point of view of *analysis*. An algebraist would have allowed the elements α , β , γ , ... in the definition to belong to an arbitrary field \mathcal{F} . A *norm* is a nonnegative real function ||a||, defined on elements $a \in \mathcal{K}$ and satisfying the following conditions: - 1) ||a|| = 0 implies a = 0, - 2) $\|\alpha a\| = |\alpha| \|a\|$, - 3) $||a+b|| \le ||a|| + ||b||$. A space \mathcal{K} that has a norm is called a *normed linear space* (the qualifier "complex" or "real" will usually be omitted). A sequence $\{x_n\}$ of elements of $\mathscr K$ is a *Cauchy sequence* if for every $\varepsilon>0$ there is an integer $N(\varepsilon)$ such that the condition m,n>N implies $\|x_n-x_m\|<\varepsilon$. A space $\mathscr K$ is complete if for every Cauchy sequence there is an element $x\in\mathscr K$ to which this sequence converges (in the ordinary sense). A complete normed linear space is called a *Banach space* (B-space). In a linear space the concept of linear dependence is defined in the usual way, and consequently so is the concept of dimension: the largest number of linearly independent elements. Although the spaces in which we are interested will usually be infinite-dimensional, we do not include infinite dimensionality in the definition of a B-space. Thus the set of complex numbers with the modulus as norm is an example of a one-dimensional B-space. An incomplete normed linear space is called a *pre-Banach* space. Every pre-Banach space can be extended to a Banach space by the abstract process of adjoining the limits of the convergent sequences ([12], Chap. II, § 3.4). Every *B*-space is simultaneously both a metric space and a topological space, but this aspect is without interest for our purposes. A complex linear space \mathcal{K} is a *pre-Hilbert* space if to every ordered pair of elements a, b there is assigned a complex number (a, b), their scalar product, satisfying the following requirements: - 1) $(a, a) \ge 0$ and (a, a) = 0 implies a = 0; - 2) (a, b) = (b, a) (the bar denotes the complex conjugate); - 3) (a+b,c)=(a,c)+(b,c); - 4) $(\alpha a, b) = \alpha(a, b)$. If in a pre-Hilbert space we set $||a||^2 = (a, a)$, it follows immediately from the classical Bunyakovsky-Schwarz inequality $$|(a,b)| \le ||a|| ||b||$$ that the function $\|a\|$ is a norm, and therefore a pre-Hilbert space is automatically a pre-Banach space. The scalar product is continuous: $\lim (a_k, b) = (\lim a_k, b)$. A complete normed pre-Hilbert space is called a *Hilbert space*. Every Hilbert space is a *B*-space. In order for it to be possible to introduce a scalar product that generates a norm in a Banach space, certain special requirements have to be satisfied ([21], Chap. I, § 5; in that book the term "pre-Hilbert space" has a quite different meaning). **1.2.** Special Subsets. A subset \mathcal{B}' of a Banach space \mathcal{B} which is in turn a B-space with the norm induced by then norm of \mathcal{B} is called a *subspace* of \mathcal{B} . We are often led to encounter a subset $\mathcal{B}' \subset \mathcal{B}$ which is a linear subspace but does not satisfy the condition of completeness in the norm of \mathcal{B} . We call such a subset a *linear manifold*. The simplest way to form a linear manifold in \mathcal{B} is to consider the *linear span* of a given subset $\mathcal{M} \subset \mathcal{B}$, i.e. the set of all finite linear combinations of elements of \mathcal{M} . If \mathcal{B}' also contains all limit elements, i.e. limits (in the norm of \mathcal{B}) of sequences of elements of \mathcal{M} , then the corresponding *closed* linear span is a subspace of \mathcal{B} . This distinction naturally occurs only when \mathcal{M} has an infinite number of linearly independent elements. A subset $2 \subset \mathcal{B}$ is *dense* in \mathcal{B} if its closure is \mathcal{B} . A set \mathcal{M} of elements is *complete* in \mathcal{B} if the linear span of \mathcal{M} is dense. A complete set $\{e_k\}$ of elements of \mathcal{B} (finite or countable) forms a *basis* if, in the representation of each element, $x = \sum_{k} x_k e_k$, the numbers x_k are uniquely determined. Al- though there are many important examples of *B*-spaces without countable bases, we shall not encounter them here. Turning now to a Hilbert space of more particular interest to us, we first notice the following fundamental proposition. **Lemma** (on orthogonal expansion). Let \mathcal{M}' be a linear manifold in the Hilbert space \mathcal{H} , and let \mathcal{N} be the set of elements $\varphi \in \mathcal{H}$ such that $(\varphi, y) = 0$ for every $y \in \mathcal{M}'$. Then \mathcal{N} is a subspace of \mathcal{H} , and each $x \in \mathcal{H}$ has a unique representation of the form $$x = x_{\mathcal{M}} \oplus x_{\mathcal{N}} \tag{1}$$ where $x_M \in \mathcal{M}$ (the closure of \mathcal{M}') and $x_N \in \mathcal{N}$. *Remark.* The subspace $\mathcal N$ is called the *orthogonal complement* of $\mathcal M$ (or $\mathcal M'$), and (1) is the *orthogonal expansion* of x. The symbol \oplus indicates this, and is also used in the notation $\mathcal H=\mathcal M\oplus\mathcal N$. *Proof of the lemma.* We evidently need to consider only the case when $\mathscr H$ is infinite. In that case, that $\mathscr N$ is a subspace follows immediately from the properties of the scalar product. If $x \in \mathcal{M}$, the proposition is trivial. Let $x \notin \mathcal{M}$ and let $\inf_{y \in \mathcal{M}} ||x - y_n|| = d$. Then there is a sequence $\{y_n\}$ such that $\|x-y\|=d_n\to d$ as $n\to\infty$. Let us show that the sequence $\{y_n\}$ converges, i.e. the infimum is attained for some element $y\in\mathcal{M}$. Using the definition of the norm in \mathcal{H} as the square of the scalar product, we obtain $$d_m^2 + d_n^2 = \|x - y_m\|^2 + \|x - y_n\|^2 = \frac{1}{2}(\|2x - y_m - y_n\|^2 + \|y_m - y_n\|^2). \tag{2}$$ Since $$2\left\|x - \frac{y_m + y_n}{2}\right\|^2 \ge 2d^2,$$ we have the inequality $$d_n^2 + d_m^2 - 2d^2 \ge \frac{1}{2} \|y_m - y_n\|^2$$ which shows that the sequence $\{y_n\}$ converges to some $y \in \mathcal{M}$. Let us show that $x - y \in \mathcal{N}$. In fact, the function F of the real parameter t, $$F(t) = ||x - y + tz||^2,$$ must have, for an arbitrarily given element $z \in \mathcal{M}$, a minimum for t = 0, i.e. F'(0) = 0. Hence (considering the pair z, iz of vectors) we conclude that (x-y,z)=0 for every $z\in\mathcal{M}$. Setting $x_{\mathcal{M}}=y$, $x_{\mathcal{N}}=x-y$, we obtain (1). The uniqueness of the representation is evident. The preceding proof can be instructively "geometrized" (in an especially intuitive way in a real Hilbert space). As is easily seen, the discussion remains valid if the space \mathcal{M} is replaced by any closed convex set (one for which $y_1, y_2 \in \mathcal{M}$ implies $(y_1 + y_2)/2 \in \mathcal{M}$). The element x - y is said to be the perpendicular from x to \mathcal{M} ; the chain of inequalities (2) uses the classical relationship between a diagonal and a side of a parallelogram. The existence of this property is a characteristic property of the Hilbert norm mentioned above. The nontrivial verification of the existence of the element y for which the infimum is attained is a consequence of the infinite dimensionality. From the lemma we at once obtain the following corollary. **Corollary.** A set $\mathcal{M} \subset \mathcal{H}$ is complete if and only if the equation (y, x) = 0for every $y \in \mathcal{M}$ implies x = 0. We can apply the classical process of orthogonalization to any countable basis $\{\varphi_k\}$ in Hilbert space, and thereby obtain an orthonormal basis $\{e_k\}$ that satisfies the conditions $(e_k, e_j) = \delta_{kj}$ (the Kronecker symbol). Then the coefficients of the expansion $x = \sum_{k=0}^{\infty} x_k e_k$ of an element $x \in \mathcal{H}$ are determined by the equations $x_k = (x, e_k)$. An orthonormal system $\{e_k\}$ is a basis if and only if $||x||^2 = \sum_{k} |(x, e_k)|^2$ (3) for every $x \in \mathcal{M}$. Remark. By using the availability of a countable orthonormal basis in \mathcal{H} we can obtain a shorter (but less instructive) proof of the lemma on orthogonal expansions. If $\{\varphi_k\}$ is a basis in \mathcal{M} , there exists a uniquely determined system of elements $\{\psi_k\}$ such that $(\varphi_k, \psi_i) = \delta_{ki}$. The system $\{\psi_k\}$ is also a basis, and is said to be biorthogonal to $\{\varphi_k\}$. For a pair of conjugate biorthogonal bases the coefficients of the expansions $x = \sum_{k} x_k \varphi_k$ and $y = \sum_{k} y_k \psi_k$ are determined by the formulas $x_k = (x, \psi_k), y_k = (y, \varphi_k)$. A basis $\{\varphi_k\}$ in \mathcal{H} is called a *Riesz basis* if there are constants c_1, c_2 such that, for every $x \in \mathcal{H}$ that is represented in the form $x = \sum x_k \varphi_k$, we have the inequalities $$c_1 \sum_{k} |x_k|^2 \le ||x||^2 \le c_2 \sum_{k} |x_k|^2. \tag{4}$$ Inequalities (4) serve as a replacement for (3) in cases when the latter is not available.