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Preface

The 11-th international symposium of the division of math-
matics of the Taniguchi Foundation on Classification of Algebraic and
Analytic Manifolds was held at Katata, Japan, July 7-13, 1982. The
present volume contains 15 articles based on the talks given at Katata.
In the symposium much time was spent to discuss open problems related
to the classification theory. The present volume also contains the list
of open problems with several comments.

We were given generous financial support by the Taniguchi
Foundation as well as warm hospitality of Mr. T. Taniguchi. We were
also indebted to Professors Y. Akizuki and S. Murakami for organizing
the symposium. We would like express our hearty thanks to them and

the Taniguchi Foundation.

Kenji Ueno
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SOME REMARKS ON KAHLER MANIFOLDS WITH c, = 0

Arnaud BEAUVILLE

These notes consist mainly of comments and applications of the re-
sults of [B]. We first recall the structure theorem for compact Kdhler
manifolds with e = 0. Up to a finite covering, such a manifold splits
as a product of irreducible factors of 3 possible types : complex tori,
special unitary projective manifolds and Kdhler symplectic manifolds.
After showing a list of examples we give some applications, mainly to
the study of automorphisms. We extend to our manifolds some results of
Nikulin on automorphisms of K3 surfaces. We then consider automorphisms

of symplectic manifolds which induce the identity in cohomology. Finally
we conclude with an example of a birational automorphism (of a projec-
tive symplectic manifold)which is not biregular ,contrary to a conjectu-

re of Bogomolov.

Parts of this paper grew out from stimulating discussions at the
Katata Conference. I wish to express my thanks to the Taniguchi
Foundation for making possible such a conference, and to K. Ueno for

organizing it so nicely.

l. The Structure Theorem

Let me first set up some terminology. A manifold is always assumed
to be connected. By a Kdhler manifold I mean a complex manifold which
admits at least one Kdhler metric.

The structure theorem formanifolds with oy 0 goes back, in a weak
form, to Calabi [C]. A stronger version was proved by Bogomolov in 1974

[Bo]. Finally the proof by S-T. Yau of the Calabi conjecture made



possible to give an easy proof of the strongest possible statement.
This fact seems to have been noticed independently by various mathema-
ticians, in particular S. Kobayashi and M.L. Michelsohn [M].

Theorem

Let X be a compact Kdhler manifold with ch(X) =0.

1) The universal covering of X is isomorphic to a product

Ekx MTviyx 1 X. , where
§ T 9 T

a) V.1 is a simply connected projective manifold, of dimension > 3,

with trivial canonical bundle, such that Ho(Vi, Qg ) =0 for

« B
0 <p<dim(V,).

b) Xj is a simply connected compact Kdhler manifold, admitting a

holomorphic 2-form mj which is everywhere non-degenerate (as an

alternate form on the holomorphic tangent bundle). Any holomorphic form

on Xj is (up to a scalar) a power of wj.

This decomposition is unique, up to the order of the vy's and of
i

the X! s.
— J

~

2) There exists a finite &tale cover X of X which is isomerphic to

a product T X II V.1 x 1 Xj , where T 1is a complex torus.
i b

Let us give a sketch of the proof, referring to [B]for the details.
According to Yau's theorem, X carries a Ricci-flat Kdhler metric. The
De Rham theorem ([K-N], IX.8) implies that the universal covering of X
is isomorphic (as a Kdhler manifold) to a product mk x 11 Mi , where
for each i the manifold Mi has irreducible holonomy . horeover Mi is
compact by the Cheeger-Gromoll theorem [C-G]. Since Mi is Ricci-flat,
its holonomy group Hi is contained in SU(mi). The list of holonomy
groups given by Berger [Be] leaves only two possibilities for Hi’ namely

H.1 = SU(mi) and Hi = Sp (mi/Z) (if m, is even) .



We now consider holomorphiec forms on Mi' The Bochner principle
implies that on a compact Kdhler Ricci-flat manifold any holomorphic
form is parallel. Therefore the space of holomorphic p-forms on Mi is
holomorphic to the space of those p-forms at a given point which are
invariant under Hi' From the representation theory of the unitary and
symplectic groups one deduces easily that Mi satisfies property a) of
the theorem if Hi = SU(mi) and property b) if Hi = Sp(mi/Z; éin case
H.1 = SU(mi) with m, > 3 , we observe that the vanishing of H™’~ implies

that M.1 is projective).

This proves the existence of the decomposition 1). The unicity is
deduced easily from the unicity of the De Rham decomposition and the
unicity of a Ricci-flat metric in a given cohomology class. Finally 2)

follows essentially from the classical Bieberbach theorem.

For obvious reasons, manifolds satisfying property a) will be
called special unitary, while those satisfying b) will be called

(irreducible) symplectic.

Let us mention some obvious consequences of the theorem. The funda-
mental group of X 1is an extension of a finite group by a group ZZa
where q is the maximum irregularity of the finite coverings of X.
If X((9k) is nonzero, then E =0 and ﬂl(X) is finite. In any case

the canonical bundle is a torsion element of Pic(X).

The following consequences are perhaps less obvious

Corollary :

Let X be a compact Kdhler manifold with ch(X) =0, of

dimension n.

(i) If n 1is odd, one has X(CVX) = 0.

(ii) If n= 2r, one has 0 < x(@fx) < 2%. The equality X(O;() w 2F

holds if and only if X 1is a product of K3 surfaces.

(iii) One has hp’O(X) < (g) for all p. If equality holds for one

value of p with O <p<n, then X 1is a complex torus.

The assertion (i) follows at once from Serre duality. Let X be a

finite covering of X which is isomorphic to a product of manifolds Mi



of dimension m which either are complex tori, or satisfy property a)
or b). Then

mi m.l/z
— <
0 < x(@y) <2,

with equality if and only if Mi is a K3 surface. Since

X((Q«X) < x( @«x) = III X(&—Mi) , this implies (ii).

Let us prove (iii). Let Ti be a complex torus of dimension my

0 0
One has nP? (Mi) < wP? (Ti) .

and equality holds (for O <p<:mi) if and only if Mi is a complex

torus. We conclude that
0% ) < hp’O(HT-l) =®

with equality (for O<p< mi) if and only if X is a complex torus.
It remains to show that in this last case X also is a complex torus.
We can assume that the covering X > X is Galois ; its Galois group G
must act trivially on HP’O(ib. This implies that any element g of G
acts on Hl’o(i) by multiplication by a p-th root of unity A(g). But

then the holomorphic Lefschetz fixed-point formula, applied to g, gives

1-(T) M@+ ) M@+ D™ = a-rE@)"=0 ,

hence A(g) = 1, which means that G acts on X by translations, so

that X 1is a torus.

2. Examples

a) Special unitary manifolds.

Except K3 surfaces and their products, all usual examples of
Kdhler manifolds with trivial canonical bundle are special unitary
. . + : .
hypersurfaces of degree (m+2) in IP" l,complete intersections of degrees
(dls-

te intersections of degrees (dl""’dr) in the twisted projective space

"’dr) in IPn, with Zdi = n+l ; more generally, weighted comple-



IP (e .,en) with Zdi = Zei. If V 1is a projective manifold with

e
ample anticanonical bundle (for instance a complex homogeneous space G/P,

where G 1is a semi-simplecompleX Lie group and P a parabolic sub-

group), then any smooth hypersurface X € |- KVI is special unitary.
More generally if Xl""’Xr are ample divisors in V meeting trans-—
versally, such that EXi = - Kv, then X =10 Xi is special unitary,

i
ete

Let me give another example whichis of a somewhat different nature.

For m=3, 4 or 6, let Em denote the elliptic curve which admits an

m
m—th roots of unity acts diagonally on Am’ with a finite number of

automorphism of order m . Put A = (Em)m. The group M of

fixed points. By blowing-up these points, we obtain a manifold Am on
which the group Mo acts in such a way that the locus of fixed points
of a generator is a smooth divisor. Therefore the manifold Xm = Am/um
is smooth. One checks easily that Xm is simply connected and that

its canonical bundle is trivial. For p # q one has

i

Hp’q(X ) = Hp’q(g ) nv_ leq(A .)11'1V
m m m

(here the sign = means ''canonically isomorphic'"). Let V = Hl’o(Am) 13
the group Yo acts on V by multiplication. Then we have

Hp’q(xm) = (/\p v el V)lnv, so Hp’q(Xq) =0 for p# O,m and
p# q. This implies that the manifolds Xm are special unitary. They

have some interesting properties : in particular they are rigid, since

y=w' et - .o

m m

1
H (Xm,TX

b) Symplectic manifolds

A symplectic structure on a complex manifold X is a holomorphic

2-form on X which is everywhere non-degenerate. The existence of such
a structure implies that X 1is even-dimensional and has trivial cano-
nical bundle. It follows from the structure theorem that a compact Kahler

manifold is symplectic irreducible (in the sense of the theorem) iff it is

simply connected and admits a unique symplectic structure (up to a

scalar).



(r)

Let S be a compact complex surface. We denote by S the r-th

symmetric product of S (quotient of g™ by the symmetric group E{r)

and by m: g~ = S(r) (r)

the quotient map. The (singular) variety S
parametrizes effective O-cycles of degree r on S. Let S[r} be
the Douady Space of O-dimensional subspaces Z < S with g g(GQZ) =y,

S[r] 5 (™

Consider the natural map €: which associates to a
finite subspace the corresponding O-cycle. Let D be the diagonal of

-1 .
S(r) (locus of cycles 2p1 +...4 pr-l)’ and put E =¢ (D). It is

clear that €: S[r] -E - S(r) - D 1is an isomorphism, so € is a bime-
romorphic morphism. Fogarty has proved that S[r] is smooth, so that
€ 1is a resolution of the singularities of S(r). Note that the excep-

tional divisor E 1is irreducible (Iarrobino).

Proposition 1:

[r]

Let S be a generic K3 surface. Then S is a Kahler symplectic

manifold, irreducible, of dimension 2r.

Here the word '"generic' means that S 1is allowed to vary in an
open dense subset of the coarse moduli space of Kahler K3 surfaces,
containing the projective ones (I have to make this rather unpleasant
restriction only because I don't know how to prove that S[r] is
Kdhler for every S). For r = 2, this example has been first noticed

by A. Fujiki (see [F2]).

Again I refer to [B] for a complete proof ; I just want to sketch
how one gets the symplectic structure on S T Let S: denote the set

of r-uples (xl,..., xr) with at most two xis equal. Put

[r]

Sir) = W(Si) and S, = E—I(S(r)). Then the map € : S£r] - Sir) is

easy to understand. Since a subspace with associated cycle 2p is given
by a point of IP(TP(S)), it is easily checked that ¢ is just the

@ . gle)
*

blowing-up of D NS, in . More precisely, let A = v_l(D) be

the diagonal of s¥ ; note that A N S: is smooth of codimension 2

in Sr o« If N2 B Sr) - Sr denotes the blowing-up of Sr along A ,
* AN % * *

then we get a commutative diagram



T n .
BA(S*) v e
] m

[r] € 5o(™)
Sg R

where p is a Galois covering with group G;r, ramified simply along

the exceptional divisor E' of n.

From a nonzero 2-form on S we deduce a symplectic structure w

on S". The form n*w is invariant under €5r , thus descends to a holo-

morphic 2-form @ on S£r] with p*Q = n*w. We have
o*div(e"h) = div(p*eD-E'=div(n*w")-E' = 0 ,
[r]

*x °

[x],
[r]

so by Hartogs'theorem ¢ extends to a holomorphic 2-form @ on S 3

hence div(¢F)=0, which implies that ¢ is a symplectic structure on S

strl_ sir]i

Now since E is irreducible, s of codimension = 2 in S

The divisor of ar’ which should be contained in S[r] -Sir]
[r]

which means that @ is a symplectic structure on S s

is zero,

[r]

Now let A be a 2-dimensional complex torus. The manifold A

3 A(r) - A be

is again symplectic, but not simply connected. Let s

the sum map (defined by s([a1]+...+[ar]) =z ai). By composition
i

with €, we obtain a morphism § : A[r] - A.

[r]

The group A acts on A by translations. Let us also consider
its action on A given by (0,a) ¥ a+ ra . Then the map S is equi-
variant with respect to these actions, so it is smooth and has isomor-—

-1
phie fibres.We put Kr—l =S (0). In the same way as prop. |, we prove

in [B]



Proposition 2 :

For A a generic 2-dimensional complex torus, the manifold Kr

is Kidhler symplectic, irreducible, of dimension 2r.

The manifold K, is simply the Kummer surface associated to A. So

1
[r]

the manifolds S appear as natural generalizations of K3 surfaces,

while Kr seems to generalize Kummer surfaces. Note however that for

S[r]

r 22 the manifolds and Kr are not isomorphic.

xl

It turns out that the manifolds S (resp. Kr) have more deforma-
tions than those coming from deformations of S(resp. A) : these defor-
mations furnish new (although not very explicit) examples of Kahler

symplectic manifolds. At the moment I know no other types of such mani-

folds.

3. Split coverings

In this section we want to state more precisely the assertion 2)
of the structure theorem, and in particular give a corresponding asser-—
tion of unicity. This will follow from general remarks about Kahler
manifolds which are covered by a product of a complex torus and a com-—

pact simply connected manifold.

Lemma :

Let T be a complex torus and S be a compact Kahler manifold

with bl(S) = 0. Then any automorphism u of TxS is of the form

(v,w), with v € Aut(T) and w € Aut(S).
Since the projection TxS > T 1is the Albanese map of T x§,

there is a commutative diagram




This implies the existence of a map w of T into the complex

Lie group Aut(S) such that

u(t,s) = (v(t), wt(s)) for t€T and s € S.

L s i o
Now the map t w, W, gilves an action of Ton S. Since S 1is

Kahler with bl(S) = 0, it is known that such an action is necessary
trivial (see e.g. [F1]),which implies the lemma.

In what follows, a covering is always assumed to be étale. We'll
say for short that a compact manifold X is split if it is isomorphic
to the product of a torus and a simply connected (compact)manifold.
Let X be a compact manifold ; we'll say that a finite covering X + X
is split if the manifold X 1is split. Finally we'll say that a split
covering TxS - X 1is minimal if it is Galois and if its Galois
group does not contain any element of the form (T,ls), where T is a

translation of the torus T.

Proposition 3 :

Let X be a compact complex manifold which admits a finite split

covering. Then there exists a minimal split covering T : T XS =+ X,

unique (up to a non-unique automorphism). Any split covering of X

factors through T

We first observe that every finite covering of a split manifold
is split ; therefore there exists a split covering m : T XS > X which
is Galois. Let G be its Galois group, and let K be the subgroup of
G consisting of automorphisms (T,ls), where T is a translation. Put
T = T/K. Then K 1is a normal subgroup of G (by the lemma) and the
covering m : T XS - X deduced from T is Galois with Galois group
G/K, hence is minimal. Let 7' : T'x S' > X be another split cove-

ring. Then there exists a Galois covering 7" of X, with Galois



