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Preface

This book is dedicated with love to my dearest parents.

This book is the first volume of the
trilogy Analytical models of thermal
stresses in composite materials I, II, 111,
presenting, in each of the volumes, ori-
ginal results only, created by the au-
thor. The fact that the author proceeds
from fundamental equations of Mecha-
nics of Solid Continuum presented in
Sections 3.1.3-3.1.6, 3.1.8 confirms orig-
inality of the results and accordingly
cstablishment of new scientific school
with an interdisciplinary character be-
longing to the scientific branch Applied
Mechanics. As an imagination consid-
ered for the analytical models, an elas-
tic solid continuum is represented by a
multi-particle-(envelope)-matrix system
consisting of components represented by
spherical particles periodically distri-

buted in an infinite matrix, without or with a spherical envelope on the surface
of each of the spherical particles. The multi-particle-(envelope)-matrix system with
different distribution of the spherical particles is considered as a model system for
the determination of the thermal stresses in real composite materials with finite
dimensions included in the categories as presented in Section 2.1 (see Items 1-
4). Dependent on the particle and envelope radii, Ry and Ry < Rs, respectively,
resulting in the envelope thickness t = Ry — Ry, on the inter-particle distance d
and on the particle volume fraction v, representing parameters of a real composite
material, the thermal stresses originating during a cooling process are a consequence
of the difference in thermal expansion coefficient of the components, as well as a
consequence of the difference in dimensions of isotropic cubic crystalline lattices
resulting from a phase transformation originating at least in one of the components.

As usual in Mechanics of Solid Continuum representing a fundamental basis of
Applied Mechanics, the state of stress of a system can be determined using different
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mathematical techniques resulting in different differential equations for an investi-
gated quantity, e.g. radial displacement, radial stress. Consequently, integration
constants included in solutions of each of the different differential equations are
derived regarding defined boundary conditions. With regard to the Castigliano’s
theorem (see Section 3.1.9) and to the different solutions describing the state of
stress of the system, such solution is considered to exhibit minimal energy of the
system.

With regard to Volume I, the thermal stresses acting in the isotropic multi-
particle-(envelope)-matrix system, represented by the isotropic components, are de-
termined using eight different mathematical techniques (see Sections 5.1-5.3, 6.1,
7.1, 7.2, 8.1) applied to the transformed equilibrium equations (3.35), (3.36) and
consequently resulting in eight different linear differential equations with non-zero
right sides related to the radial displacement of an arbitrary point in the isotropic
elastic solid continuum, considering boundary conditions defined in Section 4.1.

With regard to specific conditions for the isotropic multi-particle-envelope-matrix
system defined in Section 9.1, Equation (3.35) is not considered, and using ten dif-
ferent mathematical techniques presented in Section 9.2, Equation (3.36) is trans-
formed to ten different linear differential equations with zero right sides, exhibit-
ing solutions suitable for the determination of the thermal stresses in the spherical
particle and envelope. Additionally, with regard to completeness of the presented
topic, as presented in Sections 5.7, 6.5 and 9.5, the solutions to result from the
eight and ten different linear differential equations with and without right sides,
respectively, are used for the determination of the thermal stresses in an isotropic
one-particle-(envelope)-matrix system containing, in contrast to the isotropic multi-
particle-(envelope)-matrix, one spherical particle only, considering boundary con-
ditions defined in Section 4.2. Finally, Section 9.6.1 presents the mathematical
techniques resulting in fifteen different linear differential equations with zero right
sides related to the radial stress acting in an arbitrary point in the isotropic elastic
solid continuum, in contrast to Sections 5.1-5.3, 6.1, 7.1, 7.2, 8.1, 9.2 related to the
radial displacement.

Along with two different mathematical techniques, applied to both Equations
(3.35), (3.36) and resulting in two different differential equations with zero right
sides presented in Volume II, the analytical models of the thermal stresses acting in
the isotropic components of the isotropic multi-particle-(envelope)-matrix system,
determined in Volumes I, II as extensive as possible regarding a physical point of
view, exhibit accordingly permanent validity without a need of the updating in
future.

Devoted to an anisotropic elastic solid continuum, Volume III presents analytical
models of the thermal stresses acting in the one-axial and triaxial anisotropic com-
ponents of the anisotropic multi-particle-(envelope)-matrix system. Accordingly,
combinations of the analytical models related to the isotropic, one-axial and triaxial
anisotropic components presented in the three volumes result in analytical models
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related to the isotropic-one-axial-anisotropic, isotropic-triaxial-anisotropic and one-
triaxial anisotropic multi-particle-(envelope)-matrix systems.

In addition to the thermal stresses acting in each of the components, all volumes
of the trilogy present formulae for corresponding quantities represented by the
elastic energy density w, the elastic energy W and the thermal stresses o1, 09, 03
acting in three mutually perpendicular directions and inducing the elastic energy
density w1y, wa, ws, respectively, used for the determination of thermal-stress induced
phenomena. Presented in Volume III in forms of general formulae to include the
parameters w, o;, w; (1 =1,2,3) related to each of the isotropic, one-axial and triaxial
anisotropic components, surface and curve integrals of w, o;, w; over a corresponding
surface and along a corresponding curve in the isotropic, one-axial and triaxial
anisotropic elastic solid continuum, respectively, result in the thermal-stress induced
phenomena including

1. elastic energy fluctuations to represent energy barriers,
2. thermal-stress induced strengthening or weakening,

3. crack formation conditions along with critical values of the parameters R1, R,
v of composite materials,

4. analytical models of thermal-stress induced cracks to form in brittle composite
materials.

Along with a transformation of the thermal stresses to stresses originating in a
crystalline lattice as a consequence of the presence of a central substitutive atom
presented in Chapter 11 of Volume I for cubic crystalline lattices and in Volume III,
the trilogy Analytical models of thermal stresses in composite materials I, 11, 111
represents an integrated scientific work with regard to elasticity of the multi-
particle-(envelope)-matrix system, to the spherical particle and the spherical en-
velope, and to the infinite matrix.

With regard to the selected topics of Applied Mathematics in Sections 12.4.1—
12.4.5 presenting the mathematical knowledge to be required for the study of this
book, Volume I as well as the trilogy, exhibiting an interdisciplinary character with
respect to Items 1-4, serve several categories of readers, including senior under-
graduates and PhD. students in Mechanical Engineering, Applied Mechanics, Ap-
plied Physics, Materials Engineering, along with researchers and practicing engi-
neers working at universities, scientific institutes and in industry. Readers of the
categories are recommended to study Section 1.8.2 Categories of readers in detail *.

'This work was supported by the Slovak Research and Development Agency under the contract
No. COST-0022-06.



Xiv Ladislav Ceniga

About the author

Born in 1965 in Kosice, Slovak Republic, graduated from the Mechanical Engineer-
ing Faculty of the Technical University in Kogice (1988) (Department of Mechanical
Engineering Technology), and from the Faculty of Sciences of the P. J. Safarik
University in Kogice (1993) (Department of Physics of Solids), both with distinc-
tion, awarded the prize of the Chancellor of the Technical University in Kosice
for excellent study results, aimed at heat and chemical treatment and magnetic
properties of amorphous alloys (1994-2000), defending a PhD. thesis in Physics of
Condensed Matters and Acoustics at the Institute of Experimental Physics of the
Slovak Academy of Sciences in Kosice (1999), since 2000 employed at the Institute of
Materials Research of the Slovak Academy of Sciences in Kosice, Dr. Ladislav Ceniga
currently works on analytical models of thermal stresses and related thermal-stress
induced phenomena in composite materials?.

Dr. Ladislav Ceniga Kosice, Slovak Republic
March 2006

A (ue™ CM%

2E-mail addresses: lceniga@yahoo.com, ladislav_ceniga@yahoo.com, Iceniga@hotmail.com,
ladislav_ ceniga@hotmail.com, ceniga@post.sk, lceniga@imr.saske.sk



Contents

Preface

xi

About the author . . . . . . ... Xiv
1 Outline of principles 1
1.1 Cellmodel . . . . ... ... .. 1
1.2 Mathematical techniques . . . . . . . . .. ... ... .. ... ... 1
1.3 Reason of thermal stresses . . . . . . ... ... .. ... . .. . . . . 4
1.4 Radial stresses p1, pa . . . . . . ... 4
1.5 Temperature range . . . . . . . . .. ... ... 6
1.6 Finite matrix . . . .. ... ... 6
1.7 Subscripts and notation . . . ... ... 6
1.8 Recommendations of author . . . . . ... ... ... ... ... . . 7
1.8.1 Combinations of solutions . . . . . . ... ... . . . . .. .. 7

1.8.2  Categories of readers . . . . . . .. ... ... ... ... ... 9

1.8.3 Programming techniques . . . . . . ... ... ... ... .. . 13

2 Cell model 15
2.1  Geometric boundary condition for cell matrix . . . . . ... .. . .. 15
2.1.1 Summary . .. ... 18

2.2 Particle volume fraction . . . . . .. ... ... ... ... ... .. 18
2.2.1 General formulae . . ... ... 18
2.2.2  Analysis of interval boundaries v — 0, v — vpge . . . . . . . 19
2.2.2.1 Elastic energy W 20

2.2.3 Rectangular-based prismatic and cubic cells . . . . . . . . . . 21
2.2.4 Hexagonal-based prismaticcell . . ... ... ... .. .. .. 22

2.3 Determination of distance r. =r.(¢,v) . . .. ... ... ... ... 22
2.3.1 Rectangular-based prismatic and cubic cells . . . . . . . . . . 23
2.3.2 Hexagonal-based prismaticcell . . .. ... ... . ... ... 24

2.4 Real composite material . . . . . .. ... ... ... ... ... 25



vi Ladislav Ceniga

3 Thermal stresses in elastic solid continuum 27
3.1 Selected topics of Mechanics of Solid Continuum . . . . . . .. ... 27
3.1.1 Coordinate system . . . . . . ... ... 0L 27
3.1.2 Radial displacement . . . . . . . . ... ..o 28
3.1.2.1 Multi-particle-matrix system . . . . . ... ... ... ... 28
3.1.2.2 Multi-particle-envelope-matrix system . . . . . .. . . .. 30
3.1.2.3 Summary . . . . . ..o e e 31
3.1.3 Cauchy’sequations . . . . . . ... ... ... ... ... ... 32
3.1.4 Saint-Venant’s equations . . . . . . . .. . .. ... ... 33
3.1.5 Equilibrium equations . . . . . .. ... ... 0oL 34
3.1.6 Hooke’slaws . . . . . . . . 0 i i i i i v it 36
3.1.7 Differential equations of radial displacement . . . . . . . . .. 37
3.1.8 Elasticenergy . . . . . . . . . ..o 38
3.1.9 Castigliano’s theorem . . . . . .. ... ... ... ...... 40
3.2 Reason of thermal stresses . . . . . . . . . . ... ... 40
321 Coefficients Fp, Bes Bm. + = + » c s 05 v v 5 v v v v v w v woa 40
3.2.2 Dimension changes of components . . . . .. ... ... ... 42
3.2.3 Temperature dependence of thermal stresses. . . . . . . . .. 44
3.3 Determination of radii Ry, Ry . . . . . . . . . . . oo 45
3.3.1 Multi-particle-matrix system . . . . . ... ... ... 45
3.3.2 Multi-particle-envelope-matrix system . . . . ... . ... .. 47
3.3.3 Recommendations of author . . . . . . . ... ... ... .. 48
4 Boundary conditions 51
4.1 Multi-particle-(envelope)-matrix system . . . . . . . ... ... ... 51
4.1.1 Spherical particle . . . . . . . ..o 52
4.1.2 Spherical envelope . . . . .. ... o 0oL 53
4.1.3 Cell matrix . . . . . . . . . 54
4.1.3.1 Mandatory boundary conditions . . . . . ... ... ... 54
4.1.3.2 Additional boundary conditions . . . . . . ... ... ... 56
4.2 One-particle-(envelope)-matrix system . . . . . ... ... ... ... 57
4.3 Supplement: . : o s & v w2 w ¢ w8 w8 e s @ s M e s w5 E @ 58
4,31 Condition fp =L #F Bm + + « v+ v v v v o v v m v 0w v w s 58
432 Condition By #Be=Fm 1 » s w ¢ = =« m ¢ v« wc s «2 v w» 59

5 Isotropic multi- and one-particle-(envelope)-matrix systems.
Solutions 1, 2, 3 61
5.1 Mathematical techniques 1 . . . . . . .. ... ... 62
5.2 Mathematical techniques 2 . . . . . . . . . ..o 64
5.3 Mathematical techniques 3 . . . . . . . . ... 65
5.4 Analysisof solution . . . . . . . . .. ... oo 66
5.4.1 Spherical particle . . . . . .. ... 0 oo 66

5.4.2 Spherical envelope . . . . .. ..o 66



Contents vii

5.4.3 Cellmatrix . . . .. .. ... 67

5.4.4 Infinite matrix . . . . . . ... 67

5.5 Multi-particle-matrix system . . . . ... ... 67

5.5.1 Thermal stresses in spherical particle . . . . . . . . ... ... 68

5.5.2 Thermal stresses in cell matrix . . . . . ... .. ... ... . 70

5.6 Multi-particle-envelope-matrix system . . . . . ... ... ... ... 73

5.6.1 Thermal stresses in spherical particle. . . . . . . .. .. ... 74

5.6.1.1 Conditions 8, # e = fm and €114 — e =flp,v)y. ... T4

5.6.1.2 Condition By =Be # Bm - - - - v v o oo 74

5.6.2  Thermal stresses in spherical envelope . . . . ... ... ... 76

5.6.2.1 Condition 8, # Be # Bm  « « v o o oo 76

9.6.2.2 Conditions 3, # fBe = [, and e114¢ — enp=f(pv). ... 79

5.6.2.3 Condition 8, = Be # B« . . . . ..o 81

5.6.3 Thermal stresses in cell matrix . . . . . ... ... .. .. . . 83

5.6.3.1 Conditions fBp # e ZBmor By =L #Bm . . o . . . . 83
5.6.3.2 Conditions By, # e = B,

and €11¢e — Elltp = f (o, V) Or €11te — €11tp # f (o, v). ... 86

5.7 One-particle-(envelope)-matrix system.
Conditions e114m — €11tp = f (9, V), €110e — €118p = f (g, V),

E11tm — €1lte = f((p I/) .......................... 90

5.7.1 Thermal stresses in spherical particle and envelope . . . . . . 90

5.7.2  Thermal stresses in infinite matrix . . . . . . ... .. . ... 91

5.7.2.1 Conditions B, # B, Bp # Be # Bm, Bp = Be # Bm - - . . . 91

5.7.2.2 Condition B, # Be = Bm + « o o o oo 94
Isotropic multi- and one-particle-(envelope)-matrix systems.

Solution 4 97

6.1 Mathematical techniques 4 . . . . . ... .. ... ... ... ... . 98

6.2 Analysis of solution . . . . . . .. ... 99

6.2.1 Spherical particle . . . . . .. ... 99

6.2.2 Spherical envelope . . . . .. ... ... 100

6.2.3 Cell matrix . . . .. ... ... 101

6.2.4 Infinite matrix . . . .. . ..., 102

6.3 Multi-particle-matrix system . . . .. .. ... ... 103

6.3.1 Thermal stresses in cell matrix . . . .. ... ... . ... . . 103

A. Integration constants Cy,, # 0, Cy,,, #0, C3,, =0 . . . 103

B. Integration constants C,,, # 0, Cop, =0, C3,,, #0 . . . 107

C. Integration constants C,,, = 0, Cop, # 0, C3,y #0 . . . 111

D. Integration constants Ci,, # 0, Coy, #0, C3,,, #0 . . . 114

6.4 Multi-particle-envelope-matrix system . . . . . . .. .. . . ... .. 120

6.4.1 Thermal stresses in spherical envelope . . . . . .. ... . . . 120

6.4.1.1 Condition Bp # Be #Bm - -+« « v v v 120



Ladislav Ceniga

A. Integration constants Ci. # 0, Cye # 0, C3. =0 . . .
B. Integration constants Ci. # 0, Coe =0, C3, #0 . . .
C. Integration constants C. = 0, Coe # 0, C3, #0 . . .
6.4.1.2 Conditions 3, # Be = Bm and €11e — €11p = f (0, V) . . . .
A. Integration constants Ci, # 0, Cye = C5. = 0
B. Integration constants Cy. # 0, C1o = C3, =0
C. Integration constants C3, # 0, Cie = Coe =0 . . . .
6.4.1.3 Condition By =B # Bm - -« « « v i
A. Integration constants C1, # 0, Cye = C5. =0 . . . .
B. Integration constants Cs3. # 0, Ci. = Cy. = 0
6.4.2 Thermal stresses in cell matrix . . . .. ... ... .. . ...
6.4.2.1 Conditions Bp # Be #Bmor Bp=Le #Pm - -« - - . . ..
A. Integration constants Ci,, # 0, Ca,, # 0, C3,, = 0
B. Integration constants Ci,, # 0, Cay,, = 0, C3,, # 0
C. Integration constants Ci,, = 0, Co,, # 0, C3,, # 0
D. Integration constants Ci,, # 0, Coy, # 0, C3yy, # 0
6.4.2.2 Conditions 8y # Be = O,
and €11t — €11tp = f (0, V) OF €110e — E114p # f (V) . . . .
A. Integration constants Cy,, # 0, Ca, # 0, Cs,, = 0
B. Integration constants Ci,, # 0, Co,, = 0, C3,, # 0
C. Integration constants Cy,, = 0, Co,, # 0, C3,, # 0
D. Integration constants Cf,, # 0, Cap, # 0, Cs,, # 0
6.5 One-particle-(envelope)-matrix system.
Conditions €11¢m — €11p = f (0, V), €110 — €114p = f (0, V),
E11tm — E€llte = f ((p, V) ..........................
6.5.1 Thermal stresses in spherical particle and envelope . . . . . .
6.5.2 Thermal stresses in infinite matrix . . . ... ... ... .. .

6.5.2.1 Conditions B, # Bm, Bp # Be # Bms Bp =B # B - - . . .
6.5.2.2 Condition Bp £ Be=fm - -« v o o v i

Isotropic multi- and one-particle-(envelope)-matrix systems.
Solutions 5, 6
7.1 Mathematical techniques 5 . . . . . . .. ... ... ... ... ...
7.2 Mathematical techniques 6 . . . . . . .. ... ... ... ... .. .
7.3 Analysisof solution . . . . . . ... ...
7.4  Multi-particle-matrix system . . . . ... ... ... ... ... ...
7.4.1 Thermal stresses in cell matrix . . . . .. .. ... ... .. .
A. Integration constants Ci,, # 0, Cay, # 0, Cyn =0 . .
B. Integration constants Ci,, # 0, Cay, = 0, C3,, # 0
C. Integration constants Cy,,, = 0, Cop, 0, C3 0 . . .
D. Integration constants Ci,, # 0, Coyy # 0, C3m #0 . . .
7.5 Multi-particle-envelope-matrix system . . . . . . .. . ... .. ...

120
125
128
132
132
135
137
139
139
142
144
144
144
146
149
151

154
154
159
163
166

172
172
173
173
176

179
180
182
182
183
183
183
187
192
196



Contents ix

7.5.1 Thermal stresses in spherical envelope . . . . ... ... . .. 203
7.5.1.1 Condition By # Be # Bm -« v« « v o 203
A. Integration constants Cie # 0, Coe # 0, C3. =0 . . . 203

B. Integration constants Ci. # 0, Coe =0, C3, #0 . . . 207

C. Integration constants Cy. = 0, Cy. # 0, Cs, #0... 212

7.5.1.2 Conditions 8, # 8. = B, and €114 — 1ip = f (V). . . . 216
A. Integration constants Ci, # 0, Cye = C3. =0 . . . . 217

7.5.1.3 Condition Bo=BeZBm - « v v v i e e e 220
A. Integration constants Cjo # 0, Coe = C3. =0 . . . . 220

B. Integration constants Cs. # 0, C1e = Coe =0 . . . . 222

7.5.2  Thermal stresses in cell matrix . . . . .. . ... . ... . . . 225
7.5.2.1 Conditions 8, # B # Bm or Bo=Be#0m -+ ¢0s5 s 225

A. Integration constants Cy,, # 0, Cyp, #0, C3,,, =0 . 225
B. Integration constants Cy,, # 0, Cy,, = 0, C5,, #+0 . 227
C. Integration constants C1,, = 0, Ca,, # 0, Cs,p, #0 . 230
D. Integration constants Cip, # 0, Coyy # 0, Csp 0 . 232
7.5.2.2 Conditions 3, # Be = B,
and €llite — €11tp = f (Lp, I/) OI €11te — E11tp 75 f (Lp, I/) v s a5 209
A. Integration constants Cy,, # 0, Copm # 0, C3n =0 . 236
B. Integration constants Ci,, # 0, Cop, =0, Cs, #0 . 241
C. Integration constants Cy,, = 0, Ca,, # 0, Cspn, #0 . 245
D. Integration constants Ci,, # 0, Cop #0, Csy A0 . 250

8 Isotropic multi- and one-particle-(envelope)-matrix systems.

Solutions 7, 8 259
8.1 Mathematical techniques 7,8 . . . . ... ... .. ... .. ... .. 259
9 Isotropic multi- and one-particle-(envelope)-matrix systems.
Solution 9 261
9.1 Analysis of conditions Bp # Be = Bm
and €11¢e —€11p Z f (o V) « o o o L 261
9.2 Mathematical techniques 9 . . . . . ... ... ... .. ... ... 263
9.3 Analysis of exponent X\ . . . . ... 267
9.3.1 Spherical particle . . . . . .. ... ... ... 267
9.3.2 Spherical envelope . . . . .. ... 267
9.3.3 Infinite matrix . . . . ... ... 268
9.4  Multi-particle-envelope-matrix system.
Conditions 3, # f. = (3, and €140 — eip # flo,v) o oL 268
9.4.1 Thermal stresses in spherical particle . . . . . . . . .. . . . . 268
9.4.2 Thermal stresses in spherical envelope . . . . ... .. . ... 271

9.5  One-particle-(envelope)-matrix system.

Conditions €11¢m — €114p # f (0, 1), €114e — €114p # f (0, 1),
€11tm — €1lte # f (4,9, I/) .......................... 273



X Ladislav Ceniga

9.5.1 Thermal stresses in spherical particle . . . . . . ... ... .. 273

9.5.1.1 Conditions B, # Bm, Bp # Be # Bm, Bp # Be =Bm - . . . . 273

8.5.1.2 Condition Bp=08cF B = « s « 2 2 s s m s m s a5 w5 5 ¢ 273

9.5.2 Thermal stresses in spherical envelope . . . . . ... .. ... 275

9.5.2.1 Condition Bp A BeF Bm « « = + v v v v v v v v e o v v v u 275

9.52.2 Conditionn Bp#FBe=Pm « « =« = v v v v n 2 e v m cmww s 278

9.52.3 Comdifion B, =8 B8m ~: -~ o+ ccwmumanenm. 278

9.5.3 Thermal stresses in infinite matrix . . . . . . . .. ... ... 280

9.5.3.1 Conditions By # Bm, Bp # Be # Bms Bp=Be #Bm - - . . . 280

9.5.3.2 Condition Bp #Be=Pm =« « « « « e = c v e v et et uu 282

9.6 Supplement . . . . .. .. 284
9.6.1 Mathematical techniques 10 . . . . . . . . . . . .. ... ... 284

9.6.2 Analysisofexponent ¢ . . . . . . . ... ... L. 291

9.6.2.1 Spherical particle . . . .. ... ..o 291

9.6.2.2 Spherical envelope . . . . . . ..o oo 291

9.6.2.3 Infinite matrix . . . . . . . . . . .. ... 292

10 Radial stresses p;, po and temperature range 293
10.1 Radial stresses p1, pa . . .« . . . oo 293
10.1.1 Multi-particle-(envelope)-matrix system . . . . . . ... ... 293

10.1.2 One-particle-(envelope)-matrix system . . . . . .. ... ... 296

10.2 Dependencies p; = p1 (v, R1, R2), po = p2 (v, R1,Re) . . . . . . . .. 296
10.3 Temperature range . . . . . . . . . . . .o o 298

11 Related phenomenon 301
12 Appendix 303
12.1 Phase-transformation induced radial displacement and radial strain . 303
12.1.1 Transformation in Cartesian systems . . . . . . . . .. . ... 304

12.1.2 Radial displacement w4 and radial strain ey1¢g . . . . . . . . 306

12.2 Coefficient a;-i ............................... 308
12.3 Coefficients k and ¥ . . . . . . . .. 309
12.4 Selected topics of Applied Mathematics . . . . . .. ... ... ... 310
12.4.1 Definition of determinant. Cramer’srule . . . . . . . . . . .. 310

12.4.2 Quadratic algebraic equation . . . . . . . .. .. ... 312

12.4.3 Monotonous functions . . . . . . . ... 313

12.4.4 Indefinite integrals . . . . . . . . . .. ... ... 313

12.4.5 Wronskian’s method . . . . . . .. ... ... ... ... ... 315
Bibliography 319

Index 321



Chapter 1

Outline of principles

1.1 Cell model

To derive thermal stresses in a multi-particle-(envelope)-matrix system with infinite
dimensions replacing the types of real composite materials with finite dimensions as
presented in Section 2.1 (see Items 1-4), an infinite matrix is imaginarily divided
into identical cells, and a shape of the cell containing a central spherical particle with
the particle centre O corresponds to particles distribution, and without or with a
spherical envelope on the surface of each of the spherical particles (see Fig. 2.1a,b),
where the spherical particles, the spherical envelopes and the infinite matrix repre-
sent components of the multi-particle-envelope-matrix system. The thermal stresses
are consequently investigated within the cell, and additionally, such imaginary di-
viding of the infinite matrix is required regarding the particles distribution that the
cells can fulfil the infinite matrix perfectly, and accordingly rectangular-based and
hexagonal-based prismatic cells are considered in this book. Corresponding mathe-
matical techniques similar to those presented in Sections 2.2, 2.3 can be applied to
such cells to fulfil the infinite matrix perfectly, exhibiting a different shape than the
rectangular-based and hexagonal-based prismatic cells.

The cell dimension along the axis z; of the Cartesian system (Ozq1z973) is a
function of the inter-particle distance d; (i =1,2,3) of the particle volume fraction
v € (0, Vmaqz) and the particle radius Ry, representing, along with radii of the spher-
ical envelope R; < Rj, material parameters of a composite system, where v,,qz
depends on the particles distribution (see Section 2.2). Resulting from the matrix
infinity, analytical models of the thermal stresses in a certain cell are identical with
those in any cell with the same shape.

1.2 Mathematical techniques

With regard to an arbitrary point with a position determined by a system of suitable
coordinates, an infinitesimal spherical cap in the point P with a position determined
by the spatial polar coordinates [r, o, v] (see Fig. 3.1) represents an infinitesimal part
of a solid continuum within which the state of deformation and stress is investigated,
as usual in Mechanics of Solid Continuum, where r = |OP|. Considering elasticity
and isotropy of the solid continuum, the determination of the state of deformation
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and stress results from the Cauchy’s, Saint-Venant’s and equilibrium equations, and
from the Hooke’s laws, representing fundamental equations of Mechanics of Solid
Continuum as a basis of Applied Mechanics presented in Section 3.1.

With regard to an experience of the author, the thermal stresses in the isotropic
multi-particle-(envelope)-matrix system consisted of isotropic components can
be derived using such mathematical techniques to lead to differential equations for
the radial displacement u;, of the infinitesimal spherical cap in each of the
isotropic components !. Accordingly, the Cauchy’s equations (see Eqs. (3.1)-(3.5)),
representing relationships between the strain €;;, (i,7=1,2,3) and the radial dis-
placement wuj, along with the derivations Ouiq/0¢, Oui4/0v, are substituted to
the Hooke’s laws (see Egs. (3.26)(3.30)), and the stress o;j, is consequently de-
rived as a function of uyq, Oui4/0¢p, Ou14/0v (see Egs. (3.31)-(3.34)). The depen-
dence 04 = 044 (U14, Ouiq/Op, Oui4/0v) is substituted to the equilibrium equations
(3.15)—(3.17), representing relationships between the radial and tangential and shear
stresses, o114 and o224, 0334 and o124, 0134, respectively. Finally, the equilibrium
equations are accordingly transformed to a system of differential equations, repre-
senting a relationship between the derivations 83u14/9rd9?, 93uy,/0rov?,
0%u14/09%, 0*u1q/OV? (see Eq. (3.35)), and a relationship between w1y, dui,/0r,
0*u14/0r2, 0%u14/0¢?%, 0%u1,/01? (see Eq. (3.36)).

As presented in Sections Mathematical techniques (see Sections 5.1-5.3, 6.1, 7.1,
7.2, 8.1), different mathematical techniques applied to the differential equations
(3.35), (3.36) lead to different linear differential equations with non-zero right sides
(see Egs. (5.5), (5.13), (5.18), (6.3), (7.2), (7.11), (8.2), (8.3)) exhibiting solutions
suitable for the determination of the thermal stresses in the spherical particle (see
Sections 5.1-5.3), the spherical envelope (see Sections 5.1-5.3, 6.1, 7.1, 7.2, 8.1)
and the cell matrix (see Sections 5.1-5.3, 6.1, 7.1, 7.2), considering the boundary
conditions defined in Section 4.1.

With regard to the multi-particle-envelope-matrix system provided that
Bp # Be = Bm and €11 — €111p # f (@, v) (Egs. (3.48)-(3.50), (12.23), (12.24)),
Equation (3.35) is not considered, and Equation (3.36) is transformed to the li-
near differential equations (9.2), (9.6), (9.10), (9.13), (9.17), (9.21), (9.24), (9.28),
(9.32), (9.36) with zero right side exhibiting solutions suitable for the determina-
tion of the thermal stresses in the spherical particle and envelope (see Section 9.2),
where the coefficient 3, includes the thermal expansion coefficient oy and the phase-
transformation induced radial strain 1144, the latter dependent or independent on
the angles ¢, v of a system of the spatial polar coordinates [r,¢,r]. Addition-
ally, the thermal stresses can be determined from the linear differential equations
(9.126), (9.130), (9.134), (9.137), (9.141), (9.144), (9.147), (9.151), (9.155), (9.159),
(9.162), (9.166), (9.174), (9.179) for the radial stress o114 with zero right sides, where

'With regard to a component consisted of anisotropic crystalline lattices with mutually different
orientation of the crystalline lattice axes, the poly-crystalline component is considered to be isotropic
(1, p 5-15].
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the initial linear differential equation (9.126) is derived by the substitution of the
Saint-Venant’s equation (3.6) and the Hooke’s laws (see Eqs. (3.18)—(3.20)) to the
equilibrium equation (3.15) (see Section 9.6.1). Finally, to determine the thermal
stresses in the multi-particle-envelope-matrix system provided that Bp # Be = Bm
for €11¢¢ — €114p # f (¢, V), solutions for the spherical particle, for the spherical en-
velope and for the cell matrix are related to one of the linear differential equations
with zero right side (see Eqs. (9.2), (9.6), (9.10), (9.13), (9.17), (9.21), (9.24), (9.28),
(9.32), (9.36)) and to one of the different linear differential equations with non-zero
right sides (see Eqs. (5.5), (5.13), (5.18), (6.3), (7.2), (7.11)), respectively.

The state of deformation and stress in one of the components is determined
from a solution related to one of the different linear differential equations. Ac-
cordingly, solutions related to one or two, and to one, two or three different linear
differential equations are considered for the multi-particle-matrix and multi-particle-
envelope-matrix systems, respectively. With regard to the Castigliano’s theorem (see
Section 3.1.9), such combination of solutions resulting from the different linear dif-
ferential equations is considered to result in minimal thermal-stress induced elastic
energy of the cell, W, = W), + W,,, and W, = W, + W, + W, (see Eqs. (3.44),
(3.45)), related to the multi-particle-matrix and multi-particle-envelope-matrix sys-
tems, respectively, where W, W, and W;,, as corresponding quantities, represent
thermal-stress induced elastic energy of the spherical particle, the spherical envelope
and the cell matrix (see Eqs.(3.42)—(3.45)), respectively.

Additionally, with regard to completeness of the presented topic and to the anal-
ysis in Section 2.2.2, provided that €114m — €11p = f (¢, V), €116 — e1itp = f (o, v),
€l1tm — €1lte = f(‘Pa V) and €11tm — Elltp 7£ f((p,U), E11te — E11tp 7& f((Pv I/)7
E11tm — €11te # [ (g, V), Sections 5.7, 6.5 and 9.5 present analytical models of the
thermal stresses in an isotropic one-particle-(envelope)-matrix system containing,
in contrast to the multi-particle-(envelope)-matrix, one spherical particle only, re-
spectively, considering the boundary conditions defined in Section 4.2.

Representing corresponding quantities, the thermal stress o;, along the axis z;
(1=1,2,3; ¢ =p,e,m) inducing the elastic energy density Wiq, and the thermal-stress
induced elastic energy density w, for the multi- and one-particle-(envelope)-matrix
systems (see Section 3.1.8) are used for the determination of related phenomena (see
Items 1,...,4 in Preface), presented along with the thermal stresses in anisotropic
multi-particle-(envelope)-matrix systems in Volume III.

Finally, with regard to the transformations presented in Chapter 11, formulae for
the thermal stresses in the multi-particle-matrix system for the particles distribution
with the inter-particle distance d; = d (i =1,2,3) (see Fig. 2.1a) are transformable to
stresses originating in a crystalline lattice as a consequence of presence of a central
substitutive atom.



