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Preface

This book has evolved from the lectures of Professor Benjamin (Ben) Epstein
(1918-2004) at the Technion—Israel Institute of Technology. Throughout his
tenure at the Technion, from 1968 until his retirement in 1986, he designed
and taught two courses on Reliability Theory. One, which he considered to be
fundamental in reliability considerations, was Mathematical Models for Sys-
tems Reliability. The second course was Statistical Methods in Reliability. As
these titles indicate, although there was some overlapping, the first course con-
centrated on the mathematical probabilistic models while the second course
concentrated on statistical data analysis and inference applied to systems reli-
ability.

Epstein was one of the pioneers in developing the theory of reliability. He was
the first to advocate the use of the exponential distribution in life-testing and
developed the relevant statistical methodology. Later on, when Sobel Milton
joined Epstein’s Math Department in Wayne State, they published their joint
work in a sequence of papers. Here is what Barlow and Proschan say in their
now classical book [3]:

In 1951 Epstein and Sobel began work in the field of life-testing which was
to result in a long stream of important and extremely influential papers. This
work marked the beginning of the widespread assumption of the exponential
distribution in life-testing research.

Epstein’s contributions were officially recognized in 1974, when the American
Society for Quality decorated him with the prestigious Shewhart Medal.

Epstein’s lecture notes for Mathematical Models for Systems Reliability have
never been published. However, in 1969 they were typed, duplicated and sold
to Technion students by the Technion Student Association. Soon enough, they
were out of print, but luckily, five copies remained in the library, so students
could still use (or copy) them. After Epstein’s retirement and over the last two
decades, I taught the course, using Epstein’s notes. During the years, I added
some more topics, examples and problems, gave alternative proofs to some
results, but the general framework remained Epstein’s. In view of the fact that
the Statistical Methods in Reliability course was no longer offered, I added a



brief introduction to Statistical Estimation Theory, so that the students could
relate to estimation aspects in reliability problems (mainly in Chapters 1-3 and
6).

It is my conviction, that the material presented in this book provides a rigorous
treatment of the required probability background for understanding reliability
theory. There are many contemporary texts available in the market, which em-
phasize other aspects of reliability, as statistical methods, life-testing, engineer-
ing, reliability of electronic devices, mechanical devices, software reliability,
etc. The interested reader is advised to Google the proper keywords to find the
relevant literature.

The book can serve as a text for a one-semester course. It is assumed that the
readers of the book have taken courses in Calculus, Linear Algebra and Proba-
bility Theory. Knowledge of Statistical Estimation, Differential Equations and
Laplace Transform Methods are advantageous, though not necessary, since the
basic facts needed are included in the book.

The Poisson process and its associated probability laws are important in relia-
bility considerations and so it is only natural that Chapter 1 is devoted to this
topic. In Chapter 2, a number of stochastic models are considered as a frame-
work for discussing life length distributions. The fundamental concept of the
hazard or force of mortality function is also introduced in this chapter. For-
mal rules for computing the reliability of non-repairable systems possessing
commonly occurring structures are given in Chapter 3. In Chapter 4 we dis-
cuss the stochastic behavior over time of one-unit repairable systems and such
measures of system effectiveness as point-availability, interval and long-run
availability and interval reliability are introduced. The considerations of Chap-
ter 4 are extended to two-unit repairable systems in Chapter 5. In Chapter 6
we introduce the general continuous-time Markov chains, pure birth and death
processes and apply the results to n-unit repairable systems. We introduce the
transitions and rates diagrams and present several methods for computing the
transition probabilities matrix, including the use of computer software. First
passage time problems are considered in Chapter 7 in the context of systems
reliability. In Chapters 8 and 9 we show how techniques involving the use of
embedded Markov chains, semi-Markov processes, renewal processes, points
of regeneration and integral equations can be applied to a variety of reliability
problems, including preventive maintenance.

I am extremely grateful to Malka Epstein for her constant encouragement and
unflagging faith in this project. I would also like to thank the Technion at large,
and the Faculty of Industrial Engineering and Management in particular, for
having provided such a supportive and intellectually stimulating environment
over the last three decades. Lillian Bluestein did a a superb job in typing the
book, remaining constantly cheerful throughout.



Finally, and most importantly, I want to thank my wife and children for their
continual love and support, without which I doubt that I would have found the
strength to complete the book.

Ishay Weissman
Haifa, Israel
April 2008
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CHAPTER 1

Preliminaries

1.1 The Poisson process and distribution

The Poisson process and its generalizations play a fundamental role in the
kinds of reliability models that we shall be considering. In discussing what
we mean by a Poisson process, it is very helpful to think of random phenom-
ena such as the emission of a-particles by a radioactive substance, telephone
calls coming into an exchange, customers arriving for service, machine break-
downs over time, etc. To be specific, let us imagine that we start observing
some radioactive material with a Geiger counter at time ¢ = 0, and record each
emission as it occurs (we assume an idealized counter capable of recording
each emission). Of special interest is N (t), the number of emissions recorded
on or before time ¢. Any particular realization of N(t) is clearly a step func-
tion with unit jumps occurring at the times when an emission occurs. Thus, if
emissions occur at 0 < ¢y <ty <t3 <--- <ty..., the associated N(t) is

N(t) =0, 0<t<ty,

Nit)=1, t; <t<t,,

N(t)=2, ty<t<ts,

N(t) =k, b <t <tgyr,
etc.

Each act of observing the counter for a length of time to produces a possible
realization of the random function N (t) in a time interval of length to. One
such realization is shown in Figure 1.1. N(ty), the height of the random func-
tion N (t) at a fixed time ¢ is a discrete random variable, which can take on the
values 0,1,2,.. .. Itis of interest to find the probability that N (to) = n, which
we denote as P[N(to) = n] or more succinctly as P, (to), forn = 0,1,2, .. ..

In order to compute P, (o), one must make some assumptions about the way
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Figure 1.1 A particular realization of N (t) (0 < t < to), the number of emissions up
to time tg.

in which emissions occur over time. The simplest set of assumptions, which
seems to be reasonable not only for emissions by a radioactive substance but
in many other contexts, is the following:

(i) The number of emissions observed in two (or more) nonoverlapping time
intervals are mutually independent random variables.

(ii) The probability of an emission in the time interval (¢,t + h], where h > 0
is small, is “approximately” Ah, or more precisely Ah + o(h). Here A can
be thought of physically as the emission rate per unit time.

(iii) The probability of two or more emissions in the time interval of length A is
o(h).

The term o(h) in (ii) and (iii) means a quantity which goes to zero faster than
h, namely, o(h)/h — 0 as h — 0.

A random process developing over time and meeting these three conditions
(where the word emission would be replaced by whatever is appropriate) is said
to be a (temporally) homogeneous Poisson process. The term homogeneous
refers to our assuming in (ii) that A is the same for all time. Assumptions (i)
and (ii) taken together state that the probability of an emission in (t,¢ + h]
is approximately Ah independent of how many emissions have occurred in
(0, t]. Assumption (iii) states that, for small A, the probability of observing a
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clustering of two or more emissions in (¢, ¢+ h] is “negligible” when compared
with the probability of occurrence of a single emission.

The reader is reminded that a discrete random variable X, which takes on the

integer values 0,1, 2, ...k, ... with probabilities
ok
P X =k| = e’aﬁ (a > 0),

is said to be a Poisson random variable with parameter «. We now prove that,
for the homogeneous Poisson process, for each fixed t > 0, N(t) is a Poisson
random variable with parameter At i.e.,

At)”
)

Pa(t) = PIN() = 1] L

n=0,1,2,.... (1.1)
To prove Equation (1.1) let us consider two adjacent intervals (0, t] and (¢,t +
h]. We first show how we can relate Py(t + h) to Py(t). To do this we note that
the event {N(t 4+ h) = 0} (no emissions in (0, ¢ + h]) takes place if and only
if the events {N(t) = 0} (no emission in (0,¢]) and {N(t + h) — N(t) = 0}
(no emission in (¢, t + h]) both occur. Hence, it follows from the independence
assumption (i) that

P[N(t+h)=0]=P[N(t)=0]- P[N(t+h) — N(t) =0]. (1.2)
It is an immediate consequence of assumption (ii) that
PIN(t+h)—N()=0=1-Ah+o(h). (1.3)
Combining Equations (1.2) and (1.3) we get
Po(t + h) = Po(t)(1 — Ah) + o(h), (1.4)
or
Po(t + h}) — RO _ g+ # . (1.5)
Letting h — 0, we are led tolthe differential equation
Pi(t) = =APy(t). (1.6)

Similarly we can relate P,(t + h) to P,(t) and P,_1(t) for n > 1 and by
going to the limit as A — 0 to obtain a differential equation expressing P, (t)
in terms of P, (t) and P,_;(t). For the case where n = 1 (n > 2), there are
two (three) mutually exclusive ways of observing the event, { N (¢t + h) = n}
(exactly n emissions occur in (0, t + h]). These are:

(a) {N(t) =n}and {N(t+ h) — N(t) = 0} occur

(b) {N(t) =n—1}and {N(t+ h) — N(t) = 1} occur
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() {N(t) =n—k}and {N(t+h) — N(t) = k} occur, 2<k<n.
(If n = 1, only (a) or (b) can occur.)
It follows from the assumptions for a homogeneous Poisson process that the
probabilities associated with (a), (b), and (c), respectively, are:
P,(t)[1 — Ah +o(h)], P,_1(t)[Ah + o(h)], o(h). (1.7)

Hence, using the theorem of total probability, and combining terms of o(h),
we get

Po(t+ h) = Py(t)[1 — Ah] + Py 1 ()M + o(h) (1.8)
or
Pult + h}i Fu(t) = —AP,(t) + AP_1(¢t) + O*(}h—) . (1.9)
Letting h — 0, Equation (1.9) becomes
P (t) = =AP,(t) + AP, _1(t), n>1. (1.10)

We thus get the system of differential Equations (1.6) and (1.10) satisfied by
Py (t). We also have the initial conditions Py(0) = 1 and P, (0) = 0, n > 1
(i.e., we assume that N(¢t) = 0 att = 0).

The solution to Equation (1.6) subject to the initial condition Py(0) = 1is well
known (can be easily verified by differentiation) and is given by

Py(t) = et (1.11)
Once we know Py(t), Equation (1.10), for n = 1, is equivalent to
{eMP(t)} = A
Integrating both sides gives
Pi(t) = e M\t +¢)
for some constant c. Since P;(0) = 0, we must have ¢ = 0.

Proceeding inductively, we assume that

k
P(t) = e““%) (1.12)

holds for 0 < k& < n and we shall prove that it holds for £ = n + 1. Under the
induction assumption, Equation (1.10) is equivalent to

e/\t( n+1(t) +)\Pn+1(f)) _ {e/\tPn—f-l( )} — (At)n

Again, integrating both sides of Equation (1.13) gives

i /\n+1 tntl
P y=— | ——+c¢
¢ Prsa(t) n! <n+1 +C)’

(1.13)



