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PREFACE

This book presents one approach to that part of linear programming
theory that has come to be encompassed by the phrase *transportation
problems” or “network flow problems.”” We use the latter name, not only
because it is more nearly suggestive of the mathematicél content of the
subject, but also because it is less committed to one domain of application.
Since many of the applications that are examined have little to do with
transportation (and we have not included all the different ways in which
the theory has already been used), it seems appropriate not to stress one
particular applied area over others.

Just where the study of network flow problems may be said to have
originated is a debatable question. Certain static minimal cost transporta-
-tion models were independently studied by Hitchcock, Kantorovitch, and
Koopmans in the 1940’s. A few years later, when linear programming
began to make itself known as an organized discipline, Dantzig showed

“how his general algorithm for solving linear programs, the simplex method,

could be simplified and made more effective for the special case of trans-
portation models. It would not be inaccurate to say that the subject
matter of this book began with the work of these men on the very practical
problem of transporting a commodity from certain points of supply to
other points of demand in a way to minimize shipping cost. (This problem
forms the nucleus of our Chapter III, entitled ‘“Minimal Cost Flow
Problems.””) However, dismissing the formulational and applied aspects
of the subject completely, and with the advantages of hindsight, one can
go back a few years earlier to research of Konig, Egervary, and Menger on
linear graphs, or Hall on systems of distinct representatives for sets, and
also relate this work in pure mathematics to the practically oriented sub-
ject of flows in networks. We have done this in Chapter II, “ Feasibility
Theorems and Combinatorial Applications.”

One characteristic of the book that has been suggested above should
perhaps be made explicit. While this is primarily a book in applied
mathematics, we have also included topics that are purely mathemati-
cally motivated, together with those that are strictly utilitarian in con-
cept. For this, no apology is intended. We have simply written about
mathematics which has interested us, pure or applied.

To carry the historical sketch another (and our last) step back in time
might lead one to the Maxwell-Kirchhoff theory of current distribution in
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PREFACE

an electrical network. Although this topic is closely related to the subject
of the book, we have chosen not to include it. The reason for this is that we
have limited the flow problems discussed to purely linear ones and, within
this category, to those for which the assumption of integral data in the
problem implies the existence of an integral solution. This sub-class of
linear flow problems has, we feel, a simple elegance not shared by those
outside the class. The first restriction, that of linearity, eliminates the
Maxwell-Kirchhoff electrical network problem, which, viewed as a pro-
gramming problem, becomes one of minimizing a quadratic function
subject to linear constraints. The second restriction eliminates, for example,
linear problems that involve the simultaneous flow of several commodities,
important as these may be in practical applications of linear programming.

There are four chapters in the pages that follow; two of them (Chapters
IT and III) have been mentioned already. Chapter I, “Static Maximal
Flow,” studies the problem of maximizing flow from one point to another
in a capacity-constrained network. From our point of view, this problem
is the most fundamental topic dealt with in the book. Its solution provides
a method of attack on the feasibility and combinatorial questions that
form the subject of Chapter II, while the simple construction that results,
when taken in conjunction with work of Kuhn on the optimal assignment
problem, provides the key to the development of the various minimal cost
flow methods in Chapter III. In addition, the recent treatment by Gomory
and Hu of multi-terminal maximal flows, which is presented in Chapter IV,
relies heavily on the central theorem of Chapter I. Thus Chapter I is
prerequisite to the others, which are largely independent of each other.

Throughout the book the emphasis is on constructive procedures, even
more, on computationally effective ones. Other things being nearly equal,
we prefer a constructive proof of a theorem to a non-constructive one, and
a constructive proof that leads to an efncient computational scheme is,
to our way of thinking, just that much better.

The reader who is familiar with the simplex method of solution for
network flow problems will find that this facet of the subject has been
omitted in our presentation. For example, the notion of a spanning sub-
tree of a network, which would play a fundamental role in the simplex
theory, is not introduced until the last chapter, and then for another use.
This omission does not reflect an aesthetic judgment on our part; it is,
rather, that the more purely combinatorial methods developed here seem
to be better computationally and also yield fresh insight into the subject.
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CHAPTER I

STATIC MAXIMAL FLOW

Introduction

The mathematical problem which forms the subject matter of this
chapter, that of determining a maximal steady state flow from one point
to another in a network subject to capacity limitations on arcs, comes up
naturally in the study of transportation or communication networks. It
was posed to the authors in the spring of 1955 by T.E.Harris, who, in
conjunction with General F.S.Ross (Ret.), had formulated a simplified
model of railway traffic flow, and pinpointed this particular problem as the
central one suggested by the model [11]. It was not long after this until the
main result, Theorem 5.1, which we call the max-flow min-cut theorem,
was conjectured and established [4]. A number of proofs of this theorem
have since appeared [2, 3, 5, 14]. The constructive proof given in § 5 is the
simplest and most revealing of the several known to us.

Sections 1 and 2 discuss networks and flows in networks. There are
many alternative ways of formulating the concept of a flow through a
network ; two of these are described in § 2. After introducing some notation
in § 3, and defining the notion of a cut in § 4, we proceed to a statement and
proof of the max-flow min-cut theorem in § 5. Sections 6, 7, 9, 10, and 11
amplify and extend this theorem. In § 8, the construction implicit in its
proof is detailed and illustrated. This construction, which we call the
“labeling process,” forms the basis for almost all the algorithms presented
later in the book. A consequence of the construction is the integrity theorem
(Theorem 8.1), which has been known in connection with similar problems
since G. B. Dantzig pointed it out in 1951 [1]. It is this theorem that makes
network flow theory applicable in certain combinatorial investigations.

Section 12 provides a brief presentation of duality principles for linear
programs. Since no proofs are included, the reader not familiar with linear
inequality theory may find this section too brief to be very illuminating.
But excellent discussions are available [8, 9, 10]. We include § 12 mainly
to note that the max-flow min-cut theorem is a kind of combinatorial
cournterpart, for the special case of the maximal flow problem, of the more
general duality theorem for linear programs.

Section 13 uses the max-flow min-cut theorem to examine maximal flow
through a network as a function of a pair of individual arc capacities. The
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I. STATIC MAXIMAL FLOW

main conclusion here, which may sound empty but is not, is that any two
arcs either always reinforce each other or always interfere with each other.

1. Networks

A directed network or directed linear graph G = [N; /] consists of a
collection NV of elements z, y, . . ., together with a subset .« of the ordered
pairs (z, y) of elements taken from N. It is assumed throughout that N is a
finite set, since our interest lies mainly in the construction of computational
procedures. The elements of NV are variously called nodes, vertices, junction
points, or points; members of & are referred to as arcs, links, branches, or
edges. We shall use the node-arc terminology throughout.

A network may be pictured by selecting a point corresponding to each
node z of N and directing an arrow from z to y if the ordered pair (z, y) is
in &/. For example, the network shown in Fig. 1.1 consists of four nodes
8, z, y, ¢, and six arcs (s, z), (s, y), (=, y), (¥, 2), (,¢) and (y, ¢).

Figure 1.1

Such a network is said to be directed, since each arc carries a specific
orientation or direction. Occasionally we shall also consider undirected
networks, for which the set &/ consists of unordered pairs of nodes, or
maxed networks, in which some arcs are directed, others are not. We can of
course picture these in the same way, omitting arrowheads on arcs having
no orientation. Until something is said to the contrary, however, each arc
of the network will be assumed to have an orientation.

We have not as yet ruled out the possibility of ares (z, ) leading from a
node x to itself, but for our purposes we may as well do so. Thus, all arcs
will be supposed to be of the form (z, y) with z # y. Also, while the exist-
ence of at most one arc (z, y) has been postulated, the notion of a network
frequently allows multiple arcs joining z to y. Again, for most of the
problems we shall consider, this added generality gains nothing, and so we
shall continue to think of at most one arc leading from any node to another,
unless an explicit statement is made to the contrary.

2



§1. NETWORKS

Let 21, 23, ..%, ¥ (n > 2) be a sequence of distinet nodes of a network
such that (2, z;41) is an are, foreachs = 1,...,n — 1. Then the sequence
of nodes and arcs
(1.1) x1, (21, 22), T2, . . ., (Tn-1, Ta), Tn
is called a chain; it leads from z; to x,. Sometimes, for emphasis, we call
(1.1) a directed chain. If the definition of a chain is altered by stipulating
that z, = 1, then the displayed sequence is a directed cycle. For example,
in the network of Fig. 1.1, the chain s, (s, z), z, (,t),¢leadsfrom sto¢; this
network contains just one directed cycle, namely, z, (2, ¥), ¥, (¥, %), .

Let 3, o, . . ., 5 be a sequence of distinct nodes having the property
that either (x;, 24+1) or (xi+1, 1) is an arc, for each t =1,...,n — 1.
Singling out, for each i, one of these two possibilities, we call the resulting
sequence of nodes and arcs a path from z; to z,. Thus a path differs from a
chain by allowing the possibility of traversing an arc in a direction opposite
to its orientation in going from z; to z,. (For undirected networks, the two
notions coincide.) Ares (24, ¢+1) that belong to the path are forward arcs of
the path; the others are reverse arcs. For example, the sequence s, (s, ¥), ¥,
(2, y), , (x, t), t is a path from s to ¢ in Fig. 1.1; it contains the forward arcs
(s, 9), (x,t) and the reverse arc (z, y). If, in the definition of path, we
stipulate that 21 = zn, then the resulting sequence of nodes and arcs is a
cycle.

We may shorten the notation and refer unambiguously to the chain
x1, Ty, . . ., Tn. Occasionally we shall also refer to the path zy, z2,..., Zn;
then it is to be understood that some selection of arcs has tacitly been
made.

Given a network [N; &/], one can form a node-arc incidence matriz as
follows. List the nodes of the network vertically, say, the arcs horizontally,
and record, in the column corresponding to arc (x,y), a 1 in the row
corresponding to node «, a —1 in the row corresponding to y, and zeros
elsewhere. For example, the network of Fig. 1.1 has incidence matrix

(s, 2) (8,9) (,9) (¥, 2) (z,t) (y, 1)

sf 1L 1 0 0 0 O
zf-1 0 1 -1 1 o0
y| 0 -1 -1 1 0 1
tLo o o o -1 -1l

Clearly, all information about the structure of a network is embodied in its
node-arc incidence matrix.

If z € N, we let A(z) (“after ") denote the set of all y € N such that
(z,y)e A
(1.2) A(z) = {y e N|(z, y) e #}.

3



I. STATIC MAXIMAL FLOW

Similarly, we let B(z) (“before x’’) denote the sgt of all y € N such that
(y,2) e A

(1.3) B(z) = {y e N|(y, z) e #}.
For example, in the network of Fig. 1.1,
A(s) = {z,y}, B(s) = @ (the empty set).

We shall on occasion require some other notions concerning networks.
These will be introduced as needed.

2. Flows in networks

Given a network G = [N; /], suppose that each arc (z,y)e & has
associated with it a non-negative real number c(z, y). We call ¢(z, y) the
capacity of the arc (z, y); it may be thought of intuitively as representing
the maximal amount of some commodity that can arrive at y from = per
unit time. The function ¢ from .2/ to non-negative reals is the capacity
Sfunction. (Sometimes it will be convenient to allow infinite arc capacities
also.)

The fundamental notion underlying most of the topics treated sub-
sequently is that of a static or steady state flow through a network, which
we now proceed to formulate. (Since dynamic flows will not be discussed
until Chapter III, the qualifying phrase ‘static” or “steady state” will
usually be omitted.)

Let s and ¢ be two distinguished nodes of N. A static flow of value v from
stotin[N;.o/]is a function f from & to non-negative reals that satisfies
the linear equations and inequalities

v, z =8,

2.1) 2 fey— > fea)={ o T # 8t
yeA(z) yeB(z) —v, x =t

(2.2) flx,y) < c(z, y) all (z, y) e .

We call s the source, t the sink, and other nodes intermediate. Thus if the
net flow out of x is defined to be

> fay) = > fly, =),

y€A(z) y€ B(z)

then the equations (2.1) may be verbalized by saying that the net flow out
of the source is v, the net flow out of the sink is —» (or the net flow into the
sink is v), whereas the net flow out of an intermediate node is zero. An
equation of the latter kind will be called a conservation equation.

When necessary to avoid ambiguity, we shall denote the value of a flow f
by v(f). Notice that a flow f from s to ¢ of value v is a flow from ¢ to s of
value —v.



§2. FLOWS IN NETWORKS

An example of a flow from s to ¢ is shown in Fig. 2.1, where it is assumed
that arc capacities are sufficiently large so that none are violated. The
value of this flow is 3.

Figure 2.1

Given a flow f, we refer to f(z, y) as the arc flow f(x, y) or the flow in arc
(x, y). Each arc flow f(x, y) occurs in precisely two equations of (2.1), and
has a coefficient 1 in the equation corresponding to node z, a coefficient —1
in the equation corresponding to node y. In other words, the coefficient
matrix of equations (2.1), apart from the column corresponding to v, is the
node-arc incidence matrix of the network. (By adding the special arc (¢, s)
to the network, allowing multiple arcs if necessary, a non-negative flow
value v can be thought of as the “return flow” in (¢, s), and all equations
taken as conservation equations.)

A few observations. There is no question concerning the existence of
flows, since f = 0, v = 0 satisfy (2.1) and (2.2). Also, while we have
assumed that o/ may be a subset of the ordered pairs (z, y), * # y, with
the capacity function ¢ non-negative on &/, we could extend &/ to all
ordered pairs by taking ¢ = 0 outside of &7, or we could assume strict
positivity of ¢ by deleting from &/ ares having zero capacity. Finally, the
set of equations (2.1) is redundant, since adding the rows of its coefficient
matrix produces the zero vector. Thus we could omit any one of the
equations without loss of generality. We prefer, however, to retain the
one-one correspondence between equations and nodes.

The static maximal flow problem is that of maximizing the variable v
subject to the flow constraints (2.1) and (2.2). Before proceeding to this
problem, it is worth while to point out an alternative formulation that is
informative and will be useful in later contexts. This might be termed the
arc-chain notion of a flow from s to ¢.

Suppose that 4;, ..., Ay is an enumeration of the arcs of a network,
the arc A; having capacity ¢(4;); and let Cy, ..., Cy be a list of all directed

5



I. STATIC MAXIMAL FLOW

chains from s to t. Form the m by n incidence matrix (ay;) of arcs versus
chains by defining

1, if 4,0y,
2.3 ay =
24 i {0, _ otherwise.
Now let & be a function from the set of chains C1, . . ., C, to non-negative

reals that satisfies the inequalities

n
(2.4) > ayh(Cy) < o(4y), i=1,...,m.
j=1
We refer to & as a flow from s to t in arc-chain form, and call h(Cj) a chain
Jlow or the flow in chain Cy. The value of h is

(2.5) o(k) = > KOy
ji=1

When we need to distinguish the two notions of a flow from s to ¢ thus far
introduced, we shall call a function f from the set of arcs to non-negative
reals which satisfies (2.1) and (2.2) for some v, a flow from s to t in node-arc
form. There will usually be no need for the distinction, since we shall work
almost exclusively with node-arc flows after this section.

Let us explore the relationship between these two formulations of the

intuitive notion of a flow. Suppose that zy, . . ., z; is a list of the nodes, and
let (bgi), k=1,...,1, 2 =1,...,m, be the node-arc incidence matrix
introduced earlier. Thus
1, if A‘ = (xk’ y)’
(2.6) bgg =< —1, if 4¢ = (y, =),
0, otherwise.

Then
1, if A; = (x4, y) and 44 €Cy,
briayy =< —1, if 4; = (y, xx) and 4; €0},
0, otherwise,
and it follows that

m 1) if T = 8,
(2.7) Z bk;au =< -1, if 2 = ¢,
=t 0, otherwise.

If 4 is a flow from s to ¢ in arc-chain form, and if we define

(2.8) fld) = 3 ayh(Cy), i=1,...,m,
i=1

then f is a flow from s to ¢ in node-arc form, and v(f) = v(h). For, by (2.4)
and (2.8),

f(Ay) < c(4y),
6



§2. FLOWS IN NETWORKS
and by (27)v

mn m n
Z buf(A) = D > brayh(Cy)
1=1 1=1 j=1
= > ( > bmau)h(oj)
i=1 \i=
z h(Cy), if zp = s,
j=1
— il Z h(Cy), if 2 = ¢,
i=1
0, otherwise.

But these are precisely equations (2.1) for the function fand v=73?_, h(Cy).
On the other hand, we can start with a flow f in node-arc form having
value v, and obtain from it a flow % in arc-chain form having value
v(h) > v. Intuitively, the reason the inequality now appears is that the
node-arc formulation permits flow along chains from ¢ to s.
There are various ways of obtaining such an arc-chain flow k from a
given node-arc flow f. One way is as follows. Define

(29) h(Cj) = min f;(A‘), ] = 1, cnsy I,
4;€0Cy
where
j—=1
(2.10) fild) = f(4) = D aiph(Cp), j=1,...,n+ 1L
p=1

In words, look at the first chain Oy, reduce fi = f by as much as possible
(retaining non-negativity of arc flows) on arcs of Cy; this yields fo. The
process is then repeated with C and f2, and so on until all chains have been
examined. It follows that f;4; is a node-arc flow from s to t having value

v(fy+1) = v — ) _; M(Cyp), since

D bufyra(de) = D buf(4) — D D buaiph(Cy),
i=1 i=1 i=1 p=1

¢ j
v — > h(Cp), if 2 = s,
p=1
j
={—v+ > h(Cp), if 7 = ¢,
p=1
L 0, otherwise.



I. STATIC MAXIMAL FLOW

Moreover, f;11(4:) < fi(4y), all 4;, and fi+1(4¢) = 0 for some 4; €0y
Hence the node-arc flow Jfa+1 vanishes on some arc of every chain from
& to ¢&. This implies that v(f,+1) < 0, as the following lemma shows.

LemMa 2.1, If fis a node-arc flow from s to t having value v(f) > 0, then
there is a chain from s to t such that f > 0 on all arcs of this chain.

Proor. Let X be the set of nodes defined recursively by the rules

(a) se X,

(b) if z€ X, and if f(z, y) > 0, then y € X.
We assert that ¢ € X. For, suppose not. Then, summing the equations (2.1)
over z € X, and noting cancellations, we have

uf) = > [fy) - [y, =)

zeX
yex

But by (b), if (z, y) is an arc with z € X, y ¢ X, then f(z, y) = 0. This and
the last displayed equation contradict v(f) > 0. Thus ¢ € X. But for any
z € X, the definition of X shows that there is a chain from s to z such that
J > 0 on arcs of this chain. Hence there is a chain from s to ¢ with this
property.

It follows from the lemma that the value of Jfn+1 18 non-positive, that is

U fns1) = v — Z h(Cp) < 0.
p=1

Consequently v(k) > v. This proves '

THEOREM 2.2. Ifhisan arc-chain flow from s to t, then f defined by (2.8)
18 a node-arc flow from s to t and o(f) = v(k). On the other hand, if f is a
node-arc flow from s to t, then h defined by (2.9) and (2.10) is an arc-chain
Jlow from s to t, and v(h) > v(f).

A consequence of Theorem 2.2 is that it is immaterial whether the
maximal flow problem is formulated in terms of the node-arc incidence
matrix or the arc-chain incidence matrix. Thus, for example, since arcs of
the form (z, ) or (#, ) can be deleted from .o without changing the list of
chains from s to ¢, we .nay always suppose in either formulation of the
maximal flow problem that all source arcs point out from the source, and
all sink ares point into the sink. (For such networks, one has v(k) = v(f)
in the second part of Theorem 2.2 as well as the first part.)

A function % defined from f as in (2.9) and (2.10) will be termed a chain
decomposition of f. A chain decomposition of f will, in general, depend on the
ordering of the chains. For example, if in Fig. 1.1 we take f = lonall arcs,
and take C; = (s,x,t),0s = (s, y,t), O3 = (8,2, 9.t), Cqy = (s,9,z,t),
then h(C1) = k(C2) = 1, K(C3) = h(C4) = 0. But, examining the chains in
_reverse order would lead to (C4) = h(C3) = 1, h(C3) = R(Cy) = 0.

8



§3. NOTATION

From the computational point of view, one would certainly suppose the
node-arc formulation of the maximal flow problem to be preferable for
most networks, since the number of chains from s to ¢ is likely to be large
compared to the number of nodes or the number of arcs. A computing
procedure that required as a first step the enumeration of all chains from
8 to t would be of little value. There are less obvicus reasons why the node-

arc formulation is to be preferred from the theoretical point of view as
well.t

3. Notation

To simplify the notation, we adopt the following conventions. If X and
Y are subsets of NV, let (X, Y) denote the set of all arcs that lead from
z € X to y e Y; and, for any function g from & to reals, let

3.1) > gy =gX, 7).
(z,y)e(X,Y)

Similarly, when dealing with a function % defined on the nodes of N,
we put
(3.2) > k=) = KX).

zel¥
We customarily denote a set consisting of one element by its single element.
Thus if X contains the single node z, we write (z, Y), g(z, Y), and so on.

Set unions, intersections, and differences will be denoted by U, N, and
—, respectively. Thus X U Y is the set of nodes in X orin ¥, X N Y the
set of nodes in both X and Y, and X — Y the set of nodes in X but not
in Y. We use < for set inclusion, and < for proper inclusion. Comple-
ments of sets will be denoted by barring the appropriate symbol. For
instance, the complement of X in Nis X = N — X.

Thus, if X, Y, Z < N, then
(33)  gX,YU2Z) =gX, Y) +9X 2 -gX YN 2,

Hence if Y and Z are disjoint,
94X, YU Z) =g(X, Y) + g9(X, Z),
g(¥Y vz, X)=g(Y, X) + g(2, X).

t Two comments are in order here. First, one can describe a computing procedure
for the arc-chain formulation of the maximal flow problem that does not require an
explicit enumeration of all chains [6]. Second, a strong theoretical reason for adopting
the node-arc formulation, nonetheless, is that the node-arc incidence matrix has a
desirable property not shared by the arc-chain incidence matrix. This is the uni-
modularity property, that is, every submatrix has determinant + 1 or 0. See [12] for a

full discussion of this property and its implications for linear programming problems.
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