434

BERN

Proceedings of the 7th Annual IEEE
Symposium on Logic
in Computer Science

TP 302 ~£3
L9832 PEA0415
1992

Proceedings of the

Seventh Arninual IEEE Symposium on
Logic in
Computer Science

Santa Cruz, California
June 22 - 25, 1992

Sponsored by: !EEE Compute: Society Tachnica! Comimittee on Mathematical Foundations
of Computing
in cooperation with ACM SIGACT
Association for Symbolic Logic
Europe Association for Theoretical Coriputer Science

IEEE Computer Society Press
Les Aiamitos, California

Washington e Brussels e Tokyo

MIMRRDIn

E9560415

of Electrical and Electronics Engineers, Inc.

The papers in this book comprise the proceedings of the meeting mentioned
on the cover and title page. They reflect the authors' opinions and, in the
interests of timely dissemination, are published as presented and without
change. Their inclusion in this publication does not necessarily constitute
endorsementby the editors, the IEEE Computer Society Press, or the Institute

Published by the
IEEE Computer Society Press
10662 Los Vaqueros Circle
. PO Box 3014
Los Alamitos, CA 90720-1264

© 1992 by the Institute of Electrical and Electronics Engineefs, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of US copyright law, for private use
of patrons, those articles in this volume that carry a code at the bottom of the first page,
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance
Center, 27 Congress Street, Salem, MA 01970. Instructors are permitted to photocopy
‘isolated articles, withoutfee, for non-commercial classroomuse. Forother copying, reprint,
or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445

"Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331.

IEEE Computer Society Press Order Number 2735
Library of Congress Number 91-78307
IEEE Catalog Number 92CH3127-8
ISBN 0-8186-27352 (paper)
ISBN 0-8186-2736-0 (microfiche)
ISBN 0-8186-2797;9 (case)

Additional copies can be ordered from

IEEE Computer Society Press |EEE Service Center |IEEE Computer Society
Customer Service Center 445 Hoes Lane 13, avenue de I'Aquilon
10662 Los Vaqueros Circle PO Box 1331 B-1200 Brussels

PO Box 3014 Piscataway, NJ 08855-1331 BELGIUM

Los Alamitos, CA 90720-1264

Editorial Production: Anne Copeland
Printed in the United States of America by Braun-Brumfield, Inc.

v o THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
.

iv

|IEEE Computer Society
Ooshima Building
2-19-1 Minami-Aoyama
Minato-ku, Tokyo 107
JAPAN

Preface

The LICS Symposium aims to attract high quality original papers covering theoretical
and practical issues in computer science that relate to logic in a broad sense, including
algebraic, categorical and topological approaches. '

Representative topics mentioned in this year's call for papers include: abstract data types,
automatéd deduction, concurrency, constructive mathematics, data base theory, finite
model theory, knowledge representation, lambda and combinatory calculi, logical aspects
of computational complexity, logics in artificial intelligence, logic programming, modal
and temporal logics, program logic and semantics, rewrite rules, software specification,
type systems, and verification.

The 42 contributed papers in this volume were selected by the program committee from a
total of 174 submissions; several additional submissions arrived too late to be considered.
Selection criteria included originality, quality, and relevance to computer science. Each
extended abstract was mailed to six members of the program committee. Some members
of the committee chose to consult additional reviewers whose names are listed on the
following page. Reviews, whenever available, were sent to all submitting authors.

Although LICS submissions were read carefully, conference selection is not a formal
refereeing process. Many of the papers describe ongoing research, and it is anticipated
that authors will publish more polished and complete versions in scientific journals.

" On behalf of the program committee, I thank all authors who chose to submit their papers
to LICS '92. Many excellent submissions could not be accepted because of size
limitations on the symposium. I would also like to thank members of the program
committee and the additional reviewers for their untiring efforts in reading and evaluating
the large number of excellent submissions received this year. I would like to thank Dale
Miller for his advice in selecting the primary reviewers and his help in organizing
electronic data. I would also like to thank the Institute for Research in Cognitive Science
for providing me with office space and secretarial help. Further, I wish to thank Chris
Sandy, Janet Burns, and Renee Zawacki for managing information generated in
cataloging and evaluating so many papers.

Andre Scedrov
1992 Program Chair

Foreword

This volume is the Proceedings of the Seventh Annual IEEE Symposium on Logic in
Computer Science (LICS). The symposium encourages international participation of com-
puter scientists influenced by mathematical logic and of logicians influenced by computer
science. Previous LICS symposia were held in Cambridge, Massachusetts; Ithaca, New
York; Edinburgh, Scotland; Asilomar, Califcrnia; Philadelphia, Pennsylvania, and Amster-
dam, The Netherlands-each time attracting several hundred enthusiastic participants. The
Eighth LICS is scheduled for June 20-23, 1993, in Montreal, Canada.

LICS'92 is cosponsored by the IEEE-TC on Mathematical Foundations of Computing,
and the University of California at Santa Cruz in cooperation with the Association for
Computing Machinery-SIGACT, the Association for Symbolic Logic, and the European As-
sociation for Theoretical Computer Science. :

LICS’92 has been subsidized by

Institutional Sponsors

Cornell University
Cornell-Xerox Design Research Institute
IBM Research

University of California at Santa Cruz

Donations by these Sponsors make it possible for the LICS Organizers to subsidize student
attendance, student author awards, invited speakers, and attendance by researchers without

other travel grants.

On behalf of the Organizing Committee and all the LICS’92 participaats, I sincerely
thank these sponsors for their donations. I also thank the Program Chair, Andre Scedrov,
the Conference Chair, Phokion Kolaitis, and the Publicity Chair, Daniel Leivant, for their
many months of effort. We look forward to another fruitful symposium.

Robert L. Constable
LICS General Chair

Ithaca, NY
April 1992

vii

Martin Abadi
Sergei Artemov
Jon Barwise
Manuel Blum
Samuel Buss
Edmund Clarke
Robert L. Constable (Chair)
Erwin Engeler
Jean Gallier
Ursula Goltz
Yuri Gurevich

Egon Boerger
Rance Cleaveland
Steeve Cook
Nachum Dershowitz
Jean-Yves Girard
Rob von Glabbeek

General Chair:

Prof. Robert L. Constable

Cornell University

1992 Program Chair:

Prof. Andre Scedrov

University of Pennsylvania

Publicity Chair:

Prof. Daniel Leivant
Indiana University

Organizing Committee:

Susumu Hayashi
Gerard Huet
Giles Kahn
Deepak Kapur
Rao Kosaraju
Jan-Willem Klop
Phokion Kolaitis
Daniel Leivant
Albert R. Meyer
Grigori Mints
John Mitchell

Program Committee:

Susumu Hayashi
John Hughes

Neil Jones
Jean-Louis Lassez
Eugenio Moggi
Anil Nerode

viil

CONFERENCE ORGANIZATION

Yiannis Moschovakis
Rohit Parikh

Andrew Pitts

Gordon D. Plotkin *
Simona Ronchi Della Rocca
Grezgorz Rozenberg
Andre Scedrov

Dana Scott

Jerzy Tiuryn

Moshe Vardi

Roel de Vrijer

Fernando Pereira
Andre Scedrov (Chair)
Dana Scott

Andrezej Tarlecki

Moshe Vardi

Martin Abadi
Serge Abiteboul
Samson Abramsky
Luca Aceto

Miklos Ajtai

Nils Andersen
Peter Andrews
Krzysztof Apt
Lennart Augustsson
Leo Bachmair
Marek Bednarczyk
C. Beierle

Marcin Bialasik

H. Blair

Andreas Blass
Bard Bloom
Alexander Bockmayr
Anders Bondorf
Alexandre Boudet
Gerard Boudol
Robert S. Boyer
Val Breazu-Tannen
A. Brodsky

Steve Brookes
Antonio Bucciarelli
Peter Buneman
Hans Biining
Samuel Buss

M. Cerioli

Ed Clarke

Hubert Comon
Kevin Compton

G. Costa
Pierre-Louis Curien
Max Dauchet

J. Dix

Peter Dybjer

Hans Dybkjar
H.D. Ebbinghaus
Allen Emerson
Amy Felty

Tim Fernando

Jorg Flum

ADDITIONAL REFEREES

Nissim Francez
Tim Freeman
Peter Freyd

Jean Gallier

G. Germano

A. Giovini

S. Gnesi

A. Goerdt

E. Gridel

Etienne Grandjean
Tim Griffin
Jeremy Gunawardena
Elsa Gunter

Carl Gunter

Yuri Gurevich
Masami Hagiya
Joe Halpern

John Hannan

Bob Harper

Ryu Hasegawa
Nevin Heintze
Fritz Henglein
Hiromi Hiraishi
Sachio Hirokawa
Alain Hui Bon Hoa
Carsten Holst
Douglas Howe
Jieh Hsiang
Sebastian Hunt
Hans Hiittel

Neil Immerman
David Israel

J. Jaffar

G. Jéhrt

Jesper Jorgesen
Jean-Pierre Jouannaud
C. Jutla

Yukiyoshi Kameyama
Samuel N. Kamin
Bruce Kapron
Shmuel Katz
Henry Kautz

Delia Kesner
Y

Jan Willem Klop
Satoshi Kobayashi
Joost Kok

Beata Konikowska
Kurt Konolige
Sarit Kraus

F. Kroger
Ryszard Kubiak
Ken Kunen

T.K. Lakshman
John Launchbury
Insup Lee

Peter Lee

A. Leitsch

Daniel Leivant
Xavier Leroy
Vladimir Lifschitz
Fangzhen Lin
Patrick Lincoln
James Lipton
Ewing Lusk

M. Maher

P. Mancarella
Leo Marcus
Witek Marek

K. Marriott

M. Martelli
Simone Martini
Michel Mauny
Brian Mayoh
Dale Miller

John Mitchell
Torben Mogensen
Andy Moran
Hiroshi Nakano
Sin Nisizaki
Mitsuhiro Okada
Hiroakira Ono

C. Palamidessi
Prakash Panangaden
Christine Paulin '
Wojtek Penczek
Frank Pfenning

Toni Pitassi
David Plaisted
Amir Pnueli
Vaughan Pratt
Charles Rackoff
LV. Ramakrishnan
Uday S. Reddy
G. Reggio

Didier Remy
John Reynolds
Michael Richter
Jon Riecke
Mikael Rittri

Piet Rodenburg
Kristoffer Rose
Mads Rosendahl
Dear: Rosenzweig

Muli Safra

- Vijay Saraswat

P. Schmitt

Peter Patel-Schneider
W. Schénfeld
Helmut Schwichtenberg
S. Seibert

R.C. Sekar

Bart Selman

Peter Sesofi

Wayne Snyder
Harald Stndergaard
Klaus Ambos-Spies
D. Spreen

Marian Srebrny
Eugene Stark

Rick Statman

Mark Stickel
Makoto Tatsuta
Wolfgang Thomas
Rich Tomason
Mads Tofte
Howard Wong-Toi
Yoshihito Toyama
Alasdair Urquhart
Fer-Jan de Vries
Scott Weinstein
Daniel Weise
Benjamin Werner
R. Yap

Mariko Yasugi
Amy Zwarico

Table of Contents

Prefacl . . v v e v e e m o s v o v os s s s wa sio e i an st 755 5 se s s v

FOreWOrd.. . & % s s v w o "% % & & ' & & % ' % % & ' 5 & @ o & 5% 8 4w w w AW w ey wm vi

Conference Organization v v v o v o v o o v c st v s o s o s o on e ooes I vii

Additional Referees00 .. o w5l e g g e it o Ve e o R e viii

Session I

Third Order MatchingisDecidable i v vt v v n e o ol A% e e w 2
G. Dowek ‘

Double-Exponential Complexity of Computing a Complete Setof AC-Unifiers. 11
D. Kapur and P. Narendran

Random Worlds and Maximum Entrophy« o & 0 i i v it v ot v et e s s 22
AJ. Grove, J.Y. Halpern, and D. Kollar _

Minima! Mode! Semantics for Nonmonotonic ModalLogicso vt v v v v 34
G. Schwar:

Session I

Fixpoint Logic vs. Infinitary Logic in Finite-Model Theoryo 46
P.G. Kolaitis and M Y. Vardi

Deterininistic versus Nondetenministic Transitive Closure Logic o v o v v v v v 58
E. Gridel and G.L. McColm

Axiomatizable Classes of Finite Models and Definability

Of LINear 00T . & . v v i vttt e e e e e e e e e e e e s e e 64
A. Stelboushkin

Session III

An Abstract Standardization Theorem v vt v v it bt i e e e e s e e e 72
G. Gonthier, J.-J. Lévy, and F.-A. Melliés

A Constructive Formalization of the Caich and Throw Mechanism o0 82
H. Nakano

A Computationa! Analysis of Girard's Translationand LC0 90
CR. Murthy

The Lazy Lambda Calculus in a Concurrency SCEnario v v v v v v v o o v o v o m o s oo 102
D. Sangiorgi

Session IV ‘

Specificationin Software Development it vt i ettt e 112
JM. Wing

Tuning SOSRules iMOEQUAtONS v v v v it i e e ettt s o e o v oo onos 113
L. Aceco, B. Bloom, and F. Vaandrager ‘

ACalcelusof DataflowNetworks v it it il i e e e e 125
LE.W. Stark

Asynchronous Communicationin Process Algebra oL oo 137
F.S. de Boer, J.W. Klop, and C. Palamidessi

Equivalenceson Observable Processes ¢ v v v v v it i i it e e e e e 148
I. Ulidowski

Session V

The Typeand Effect Discipline o i i i i i i it e ittt e it ee e e 162

J.-P. Talpin and P. Jouvelot

Xi

Disjunctive Strictness Analysis
T.P. Jensen

References, Local Variables,andOperations W S R 186
I1.A. Mason and C.L. Talcott

Session VI

Horn Programming in Linear LogicisSNP-Complete0vec0 o §av 4 4200
M. Kanovich

New Foundations for the Geometryof Interaction v v v v v v v v v v o v 0o 211
§. Abramsky and R. Jagadeesan

Linear Logic withoutBoxes o ol S 8w L T L R LY T
G. Gonthier, M. Abadi, and J.-J. Lé

Operational Aspects of Linear Lambda Calculus , o e e s e Y . 235
P. Lincoln and J. Mitchell

Session VII .

Origins of the Calculusof BinaryRelations v v ¢ v v v v v v v v v v v v s e e ... 248
V. Pratt

Decidable Problems in Shallow Equational Theories v v v v ¢ 0 v v v v v v v v v o v 255
H. Comon, M. Haberstrau, and J.-P. Jouannaud :

Monadic Theory of Term ReWIItiNgS v v v v v v o v v v o v o v o o v o oo o moncona 266
D. Caucal

Strong Sequentiality of Left-Linear Overlapping Term Rewriting Systems v ¢ s « o & 274
Y. Toyama

Session VIII

There is No Recursive Axiomatization for Feasible Functionalsof Type 2. v v v v ¢ 4« 286
A. Seth

Cutting Planes and Constant Depth Frege Proofs ¢« v v v v v v v v v v 0 v o v s o v w o V296
P. Clote

Subtype Inequalities . . . + v v 5 s 5w w3 e de we e e s s e e e e e e e e e A 308
J. Tiuryn ' :

Session IX

An Engine for Logic Program AnalysiS o v vt vttt it b et et e e 318
N. Heintze and J. Jaffar

Solving Systems of Set CONSAINS v v v v v v v o ot v st 0 bt e e 329
A. Aiken and E.L. Wimmers

The Category of Constraint Systems is Cartesian-Closed 0 % o i e WS 341
V. Saraswat

Session X

Generalized Quantifiers and Pebble Gameson Finite Structures v v v ¢ v v v 6 0 0 v o s 348
P.G. Kolaitis and J A. Vadndnen -

Logical HierarchieSinPTIME ¢ .« ¢ v ¢ e e s st v s vt a s vnnsaas é e abhtd e 360
L. Hella

Zero-OneLawsforModalLogic. v v vt v v v et v v an B % @ (e e R ke o o369
J.Y. Halpern and B.M. Kapron

Session XI

Construction for Tree AUtOmAta v v v ot v s o oot s oo v nnnncsssessaas 382
N. Klarlund

Symbolic Model Checking for Real-Time Systems ¢ ¢ v v v v v vt v v v a v o e 394
T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine

Xii

Compiler VerificationinLF, 0ot v vt v vn e .0 8 88 ein e et i i i
J. Hannan and F. Pfenning :

Mixing List Recursionand Integer Ordering v v v v v e v o 0 0 0 0 s v o n oo .
L. Fribourg

Session XII

Observable Sequential Algorithmson Concrete Data SUCIUreS v v v v v o v o 0 o 0 0 s o o
P.-L. Curien '

Functorial Parametricity R L T R I e S
PJ. Freyd, E.P. Robinson, and G. Rosolini

The Church-Rosser Property for fn-Reductionin TypedA-Calculi0 0c ...
H. Geuvers

Retracts in Simply Typed ABn-Calculus v v v v v v vt v et bt e ettt e o nenns
U. de’Liguoro, A. Piperno, and R. Statman

AuthorIndex v ittt ittt ittt ittt et e

Xili

SEssze;fsN 1:

é S

CHAIR: JOHN MITCHELL

Third Order Matching is Decidable

Gilles Dowek
INRIA-Rocquencourt,
B.P. 105, 78153 Le Chesnay CEDEX, France

dowek@margaux.inria.fr

and

School of Computer Science,
Carnegie Mellon University,
Pittsburgh PA15213-3890, U.S.A.

gdowek@cs.cmu.edu

Abstract

The higher order matching problem is the problem
of determining whether a term is an instance of an-
other in the ssmply typed A-calculus, i.e. to solve the
equation a = b where a and b are simply typed A-terms
and b is ground. The decidability of this problem is still
open. We prove the decidability of the particular case
in which the variables occurring in the term a are at
most third order.

Introduction

The higher order malching problem is the problem
of determining whether a term is an instance of an-
other in the simply typed A-calculus i.e. to solve the
equation a = b where a and b are simply typed A-terms
and b is ground. '

Pattern matching algorithms are used to check if
a proposition can be deduced from another by elim-
ination of universal quantifiers or by introduction of
existential quantifiers. In automated theorem proving,
elimination of universal quantifiers and introduction of
existential quantifiers are mixed and full unification is
required, but in proof-checking and semi-automated
theorem proving, these rules can be applied separately
and thus pattern matching can be used instead of uni-
fication.

The higher order matching is conjectured decidable
in [6] and the problem is still open. In [5] [6] [7] Huet
has given a semi-decision algorithm and shown that
in the particular case in which the variables occurring
in the term a are at most second order this algorithm
terminates, and thus that second order matching is
decidable. In [9] Statman has reduced the conjecture
to the A-definability conjecture and in [10] Wolfram
has given an always terminating algorithm whose com-
pleteness is conjectured.

We prove in this paper that third order matching
is decidable i.e. we give an algorithm that decides
if a matching problem, in which all the variables are
at most third order, has a solution. The main idea

0-8186-2735-2/92 $3.00 © 1992 IEEE ,

is that if the problem a = b has a solution then it
also has a solution whose depth is bounded by some
integer s depending only on the problem a = b, so a
simple enumeration of the substitutions whose depth
is bounded by s gives a decision algorithm. This result
ean also be used to bound the depth of the search tree
in Huet’s semi-decision algorithm and thus turn it into
an always terminating algorithm.

At last we discuss the problems that occur when we
try to generalize the proof given here to higher order
matching.

1 Trees and Terms

1.1 Trees

Definitions 1 (Following [3]) An occurrence is a list
of strictly positive integers. A tree domain D is a non
empty finite set of occurrences such that if a[n] € D
then a € D andifalson # 1then a[n-1] € D. A
tree is a function from a tree domain D to a set L,
called the set of labels of the tree.

If T is a tree and D its domain, the occurrenceﬂ is
called the root of T and the occurrence a[n] is called
the n** son of the occurrence a. The number of sons
of an occurrence a is the greatest integer n such that
a[n] € D. A leaf is an occurrence that has no sons.

Let T be a tree and a = [s;;...;8,] an occurrence
in this tree, the path of a is the set of occurrences
{[81;-..;8p] | p < n}. The number of elements of this
path is the length of a plus one. :

The depth of the tree T is the length of the longest
occurrence in D. This occurrence is, of course, a leaf.

If a is a label and Ty, ...,T, are trees (of domains
D,,...,D,) then the tree of root a and sons Th,..., T,
is the tree T of domain D = {[]} U U;{[i]e | @ € D;}
such that

I(()=e

and
T([ile) = Ti(a)

If T is a tree of domain D and « is an occurrence
of D, the subtree T/a is the tree T' whose domain is
D' = {B | aB € D} and such that

T'(B) = T(ap)

If T is a tree of domain D, a an occurrence of D
and T’ a tree of domain D' then the graft of T in T at
the occurrence a (T[a «— T"]) is the tree T" of domain
D"=D—-{af |aB€ D} U {af | B € D'} and such

that
T'(v)=T'(B) ify =aB

and
T"(v) = T(v) otherwise

Let T and T be trees, and a a label such that all
the occurrences of a in T are leaves a,, ...,a, then the
substitution of T for a in T (T[a «— T"']) is defined as
Tlay — T']...[an + T']. Remark that since aj,...,a,
are leaves, the order in which the grafts are performed
is insignificant.

1.2 Types

Definition 2 Let us consider a finite set 7. The el-
ements of 7 are called atomic types. A type is a tree
whose labels are either the elements of 7 or — and
such that the occurrences labeled by an element of T
are leaves and the ones labeled by — have two sons.

Let T be a type, if the root of T is an atomic type U
then T is written U, if the root of T is — and its sons
are written T and T, then T is written (T} — Td).
By convention T} — T — T3 is an abbreviation for
(T = (T2 — T3)).

Definition 3 If T is a type, the order of T is defined

by
° o}T) =1if T is atomic,
e o(Ty — T3) = maz{l + o(T1), 0o(T3)}.

1.3 Typed A-terms

Definitions 4 For each type T we consider three sets
Ur, _r, Er. The elements of Ur are called universal
variables of type T, those of Ly local variables of type
T and those of £ ezistential variables of type T'. We
assume that we have in each atomic type at least a
universal variable and that there is a finite number of
universal variables i.e. that the set |J,Ur is finite.
We assume also that we have in each type an infinite
number of local and existential variables.

A typed A-term is a tree whose labels are either
App, < Lam,z > where 2 is a local variable or
< Var,z > where z is a universal, local or existen-
tial variable, such that the occurrences labeled by App
have two sons, the occurrences labeled < Lam,z >
have one son and the occurrences labeled < Var,z >
are leaves.

Let ¢ be a term, if the root of t is < Var,z > we
write it @, if the root of t is < Lam, 2 > and its son is
written v then we write it [z : T]Ju where T is the type
of z, if the root of ¢ is App and its sons are written u

and v then we write it (u v). By convention (v v w)
is an abbreviation for ((z v) w).

In a term ¢, an occurrence a labeled by < Var,z >
is bound if there exists an occurrence 8 in the path of
a labeled by < Lam, z >, it is free otherwise.

A term is ground if no occurrence is labeled by a
pair < Var,z > with z existential.

Let t and t' be terms and z be a variable, the
substitution of t' for z in t (t[z — t']) is defined as
t[< Var,z >~ 1]

Definition 5 Type of a term
A term t is said to have the type T if either:
e i is a variable (universal, local or existential) of type

et = (uv)and u has type U — T and v type U for

some type U,

et =[z:U]u,theterm vhastype VandT=U — V.
A term tis said to be well-typed if there exists a type

T such that ¢ has type T. In this case T is unique and

is called the type of t.

Definition 6 The Bn-reduction is defined as small-
est transitive relation, compatible with term structure
such that

(2:Titu) Dtz —

[2:T)(t 2) >t if z is not free in ¢

We adopt the usual convention of considering terms
up to a-conversion (i.e. bound variable renaming) and
we consider that bound variables are renamed to avoid
capture during substitutions. A rigorous presentation
would use de Bruijn indices [2].

Proposition 1 The Bn-reduction relation is strongly
normalizable and confluent on typed terms, and thus
each term has a unique normal form.

Proof See, for instance, [4].

Proposition 2 Let ¢t be a normal well-typed term of
type Ty — ... = T, — T (T atomic), the term ¢ has
the form

t=[n:T1)[Um: Tm)(z w1 ... up)

where m < n and z is a variable.

Proof The term ¢ can be written in a unique way
t = [: U1)...[ym : Un]u where u is not an abstrac-
tion. The term u can be written in a unique way
v = (v w1 ... 4p) where v is not an application. The
term v is not an application by definition, it is not an
abstraction (if p = 0 because u is not an abstraction
and if p # 0 because t is normal), it is therefore a
variable. Then for type reasons m < n and for all i,
U; =T;.

Definition 7 If t = [11 : T1)...[um : Tm](z w1 ... up)
isa term of type T=T} — ... — T, — T (T atomic)
(m < n) which is in An-normal form then we define
its B-normal n-long form as the term

t = [yl : Tl]-"[ym : Tm][y,,.+1 : Tm+1]-'-[yn . Tn]
(z ¥y - Up Ymyy - Wn)

where u} is the B-normal n-long form of u; and y; is
the B-normal n-long form of .

This definition is by induciion on the pair < ¢3,¢2 >
where ¢; is the number of occurrences in £ and ¢, the
number of occurrences in T'

In the following all the terms are assumed to be on
B-normal 7n-long form.

1.4 Bohin Trees

Definition 8 Béhm Tree :

A glmtc) Bohm iree is a tree whose occurrences
are labeled by pairs < I,z > such that [is a list of
local variables [y.;. ,yﬂ] and z is a variable and the
number of sons of an occurrence labeled by < l,2 > is
the arity of z i.e. the integer p such that the t)pe of
z has the form T}, — ... = T, — T with T’ atomic.

Definition 9 Type of a Bohm Tree

Let ¢ be a Bohm tree whose root is labeled by the
pair < [3;...;1m),2 > and whose sors are u;. ..., u,.
The Bohm tree ¢ 1s said to have the type T if the thm

trees uy,..., 4, have type Uh,...,U, the variable z has
type Uy — ...— U, —»UandT T1 — .= Ty = U
where T3, ..., 7, are the types of the variables y;, ..., ¥

A Bohm tree ¢ is said to be well-typed if there exists
a type T csuch that { has type T. In this case T is
unique and is called the type of t.

Definition 10 Let t be & A-term in normal form. We
write t = [y : Th]...[sn : Tn}(2 w; ... up). The Béhin
tree of t i3 the tree whose root is the pair < [,z >
where ! = [y} ...;yn] is the list of the variebles hound
at the top of this term, z is the head vuriable of ¢ and
sons are the Bohm trees of u,,..., up.

Remark Normal well-typed terms and well-typed
Bohm trecs are in one-to-one correspondence. More-
over if ¢ is a normal term and { is its Bohm tree then
occurrences in ¢ labeled by a variable and occurrences
in 1 are in one-to-one correspondence.

So we will use the following abuse of notation: if a
is an occurreace in the Bohm tree of £ we write (¢/a)
for the normal term corresponding to the Bohm tree
(i/a) and tlo «— w] for the term t(a’ ~ u] where o' is
the variable occurrence in t corresponding to a.

Definition 11 Let £ be & term, we write || for the
depth of the Bchm tree of the normal form of ¢.

Proposition 3 In each type T’ there is a ground term
t such that t| = 0.

Proof et T=U; — ... = U, — U with U atomie.
Let @ be a universal variable of type U. The term
t = [y : Ui)...[ym : Un)2 hes type T and its depth is 0.

1.6 Substitution

Definition 12 A substitution is a finite set of pairs
< ®;,t; > where 3; is an existential variable and ¢; a
term of the seme type in which no local variable occurs
free such thot if < @;2 > and < £,¢' > are both in this
set then ¢ = ¢'. The variables 2; are suid to be bound
by the substitution.

Definition 13 If ¢ is a substitution and ¢ a ferm then
we let

ot =tla] — 11]...[&}" —][0 — &) [l — 1)

where c .. a’ are the occurrences of z; n ¢.

Rcmark that since the a ere leaves, the order in
which the grafts are performed is insignificant.

Definition 14 Let ¢ and 7 be two substitutions the
substitution 7 c o is defined by

roo={<z.7t> | <z,i>€ d}u{<..:t>
| <2,t>€ +and z not bound by o}

Proposition 4 Let o and T be two substitutions aud
t is a term, we have

(roo)t = 7(ot)

Proof By decreasing induction oun the depth of an
occurrence a in ¢ we prove that we have

(roo)(t/a) = r(a(t/e))
2 Pattern Matching

Definition 15 Matching Problem

A tnatching prodlem 1s a pair of well-typed terms
< a,b > where a and b have the same type and b is
ground. .

Definition 18 Third Order Matiching Problem

A third order matching probiem is a matching prob-
lem < a,b > such that the types of the existential
vaeriables that occur in-a are of order at most three.

Definition 17 Solation

Let a = & be a matching problem. A substitution &
is a solution of this problem if and only if the normal
forms of the tcrms ca and b are identical up to a-
conversion.

Remark Usual unification terminology distinguishes
varicbles (here existential variables) and consiants
(here universal variables). The need for local vari-
ables comes from the fact that we want to transiorm
the problem [y R: lf]z =[y: where z is an ex-
isteniial varizble of type T mto the problem: z = y
by dropping the common abstraction. The symbol y
cannot be an existential variable because it cannot be
instenciated by a substitution, it cannot be a universal
veriable because, if it were, we would have the solution
to the second problem z « y which is not 2 sclution
to the first. So we let y be & local variable and the
solution # « y is now forbidden in both problems
because no local variable can occur free in the ierms
substituted to variables in a substitution.

In Huet’s urification algorithm [5] [6] these local
varicbles are always kept in the head of the terms in
common abstractions. In Miller’s mixed prefixes tei-
minology [8], these local variables are universal vari-
ub%es declered to the right of all the existential vari-
ables

Definition 18 Ground Solution

Let ¢ = b be a probiera and o a soluiion to o = b.
The solution o is ground if for each existential variable
that has an occurrence in «, the term oz is ground.

Proposition 5 I a matching problem has a-solutior
then it has a ground solution. '

Proof Let @ = b be o matching problem and o & so-
lution. Let 41 : Thyeeey i ¢ In the existential variables
occurring in the oz for exisiential variable of a. Let
U1, ., U De ground ferms of the types Ty, ..., T,. Lel
r={<y,u1 >y < Yn, Un >}, and o' = roe. Obvi-
susly, for each existential veriable 2 of a, the term o'z
is ground. And ¢'a = roe = rb = b. So the problem
o = b has a ground sclutiorn.

Definition 18 Complete Set of Soluiions

Obviously if ¢ is a solution tc a problem a = b then
r oo is cae too. A set S of sciutions to a probiem
a = b is said to be complete if for every snbstitution
& solution to this problem there exists a substitution
o £ S zud & substitution 7 such thai 6 = voc.

Lemmea 1 Some probleais have no finite complete set
of solutions.

Proof (Exeample 1) Consider an atomic ivpe 7' and
an existential variable # : T — (T —= T) — I'. The
probiem

[a: Tz a{z:T)z) =la:T)e

has en infinite number of independent minimal solu-
tions

z+[c:T)e:T — T){s.... (8 0) ...)

S0 in contrast with second order maiching [6] [7]
there is no (always terminating) algorithm that enu-
merates all the independent minimal solutions of a
third orde: matching problem.

We consider now sigorithms that take ss an tnput
a matching problem ard either give one solution to it
or fail if it does not have any. - :

3 A Bound en the Depth of Solutions

The nizin idea in this paper is that when we have
a matching problem a = b and @ is an existential vari-
able cccurring in @ and t is the tenm substituted to
z by some solution to the problem then the depth of
the Bdnm tree of 7 can be bounded by an integer ¢
depending only ou the problem a = b Of course the
previous example shows that a matching prcblem may
brve solutions of arbitrary depth, bui to design a de-
cision algorithm we do not need to prove that all the
solutions are hounded by s but only that at least one
is.

To show this result we take & problem a = b
that has & solution o (by proposition 5, we can con-
sider without loss of generality thai this solution is
ground) and we build another solutiop ¢’ whose depth
is bounded by an integer s depending only on the prob-
lema =&

3.1 Key Lenama

Definition 20 Let ¢ = [z1 : Uy]...[2p : Up]d be a nor-
mal term end i an integer, ¢ < p. We say that c is
relevant in its #*® argument if z; has an occurrence in
the term d.

Lomma 2 (Key Lemma) Let us consider a normal
term u, u variable y of type T' of order at most two
and a normal ground term ¢ of type T.

(1) If ¥ has an occurrence in u then |¢| < |uly « c]|.

(2) If o is an occurzence in the Bohm tree of u suck
that no occurzence in the path of o is labeled by y,
ihen o is also an occurrence in the normal form of
uly «] and has the same label in the BGhm tree of u
and in the Bohm tree of the normal form of ufy « ¢].

(3) ¥ @ = [s1;...;8a] is an occurrence in the Bohm
tree of u such that for each occurrence 8 = [51;...; 8]
in the path of a, B8 # a, labeled by y, the term c is
relevant in its »** argument where » is the position of
the son of @ in the path of @ ie. 7 = 8341, then there
exists an occurrence ¢ of the Bohm tree of the nermal
form of u[y « c] such that all the labels occurring in
the path of a, except y, occur in the path of o' and
the number of times they occur in the path of o' is
greater or equal to the number of times they occur in
the path of a.

(4) Moreover if |¢| # 0 then the length of o is
greater or equal to the'length of a.

Proof By induction on the number of occurrences of
y in u. We subsiitute these occurrences one by one
and we normalize the term. Let 8 be the occurrence
in the Bohm tree of u corresponding to the occurrence
of ¥ in u we substitute. Let us write

2. [zp : Upld

c=[zn

The term (u/B) has the form (y e; ... e;). When
we substitute y by the term c in (y €1 ... ep) we get
(cey ... ep) and when we normalize this term we get the
term d[z) « e1,...,2p — €p] Which is normal because
the type of the e; are first order. .

Let us consider the occurrences in the B6hm tree of
u, while substituting the occurrence of y correspond-
ing to B, we have removed all the occurrences Blily
where ¢ is an integer (i < pg and v is an occurrence
in the Bohm tree of e;. We have added all the occur-
rences 36 where & is an occurrence of the Bohm tree of
¢ labeled by a variable different from z1,...,2, and all
the occurrences 88y where & is a leaf occurrence in the
Bohm tree of ¢ labeled by a z; and v is an occurrence
of the Bohm tree of e;.

(1) Let B8 be an outermost occurrence of y in the
Bohm tree of u. For each occurrence § in the Bohm
tree of ¢, 36 is an occurrence in the Bohm tree of the
normal form of u[y « ¢]. So |¢| < |u[y « ¢]|.

(2) When an occurrence 8 of y is substituted by ¢
all the occurrences removed have the form B[i]y. So
if no occurrence in the path of a is labeled by y, the
occurrence a remain in the normal form of u[y « cJ.

(3) If the occurrence B is not in the path of a then
the occurrence a is still an occurrence in the normal
form of ufy « c], we take o' = a.

If B = a then the occurrence g is an occurrence of
the Bohm tree of the normal form of u[y — ¢]. We
take @' = B = a. L

If B is in the path of a and B # @, 8 = [sy,...,8)
then let 7 be the position of the son of 8 in the path
of aie. » = 8,4;. Let 4 such that a = B[r]y. By
hypothesis z, has an occurrence in d, let § be such an
occurrence. The occurrence (86~ is an occurrence in
the Bohm tree of the normal form of uly «— c]. We
take o’ = B6~.

In all the cases, all the labels occurring in the path
of a, except y, occur in the path of ' and the number
of times they occur in the path of o’ is greater or equal
to the number of times they occur in the path of a.

(4) X6 =[] then ¢ = [z, : U1)]...[2 : Up)z, and
le|] = 0. Soif |¢| # O then § # L] and the length of o’
is greater or equal to the length of .

Corollary Let us consider a normal term u, a vari-
able y of type T of order at most two and a ground
term c of type T'. If ¢ is relevant in all its arguments
and |c| # 0 then |u| < |ufy « c]|.

Proof We take for o the longest occurrence in the
Bohm tree of u. When we substitute one by one the
occurrences of y, by part (4) of the key lemma, we get
longer occurrences. So there is an occurrence in the
Bohm tree of the normal form of u[y «— c] which is
longer than a. So |u| < |ufy « c]|.

3.2 Constraints on the Substitution o’

First we are going to express some equational con-
straints that the substitution ¢’/ must verify in order
to be a solution to the problem @ = b. Of course
the equation @ = b answers the problem, but we
need simpler ones: our equations will be on the form

(z c1 ... ¢p) = b’ where 2 is a variable and ¢y, ...,¢cq, b’
are ground terms.

Definition 21 Let @ = b be a problem and o a
(ground) solution to this problem. By induction on
the number of occurrences of a we construct a set of
equations =(a = b, 7).

e If a = [z : T'|d then since o is a solution to the
problem a = b we have b = [z : T)e and ¢ is a solution
to the problem d = e. We let

E(a=b,0)=ZE(d=¢,0)

eIlfa=(fd, ...d,) with f universal or local then
since o is a solution toa = b we have b = (f e, ... &)
and o is a solution to the problems d; = e;. We let

Z(e=b,0) = UE(d.- =e;,0)

i

eIfa = (zd, ..d,) with z existential then for all
i such that z has an occurrence in the normal form
of the term (oz od; ... 0di_; 2 0d;yy ... 0dy) we let
¢ = od; and H; = E(d; = od;,0) Sobviously oisa
solution to d; = od;). Otherwise we let ¢; = z; where
z; is a new local vanable and H; = 0. We let

Ea=bo)={(zc1 .. cn) =b}UUH,-

Proposition 6 Let t = (2 d; ... dy) be a term and
o be a substitution. Let ¢; = od; if z has an occur-
rence in (02 od; ... 0di_1 z odiyy ... 0d,) and ¢; = z;
new local variable of the same type as d; otherwise.
The variables z; do not occur in the normal form of
Oz C1 ... Cp).

roof Let us assume that some of these variables have
an occurrence in the normal form of (¢z ¢; ... cp)
and consider outermost occurrence of such a vari-
able z; in the Bohm tree of the normal form of
(o2 ¢1 ... cn). By part (2) of the key lemma, the vari-
able z; has also an occurrence in the normal form of
term (oz ¢y ... ¢n)[2; — od;j | j # i] i.e. in the normal
form of the term (o2 ad; ... odi_y 2z odiyy ... 0dy),
which is contradictory.

Proposition 7 Let a = b be an equation and o a
solution to this equation,

o .the substitution o is a solution to the equations
of the set E(a = b, 0),

o conversely if ¢’ is a solution to the’equations of
E(e = b,0) then ¢’ is also a solution to the problem
a=b.

Proof

e By induction on the number of occurrences of
a. When a is an abstraction (resp. an atomic term
whose head is universal or local) then by induction
hypothesis o is a solution to all the equations of the
set Z(d = e,0) (resp. E(d; = e;,0)), so it is a solution
to all the equations of E(a = b, o).

When a = (z d; ... dn) then by induction hypothesis
o is a solution to. all the equations of the H}s and

