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1

Preface

So far as the laws of mathematics refer to reality, they are not
certain. And so far as they are certain, they do not refer to
reality. —A. Einstein

The word “instability” in day-to-day language is associated with some-
thing going wrong or being abnormal: exponential growth of cancer cells,
irrational behavior of a patient, collapse of a structure, etc. This book,
however, is about “good” instabilities, which lead to change, evolution,
progress, creativity, and intelligence; they explain the paradox of irreversi-
bility in thermodynamics, the phenomena of chaos and turbulence in clas-
sical mechanics, and non-deterministic (multi-choice) behavior in biological
and social systems.

The concept of instability is an attribute of dynamical models that de-
scribe change in time of physical parameters, biological or social events,
etc. Each dynamical model has a certain sensitivity to small changes or
“errors” in initial values of its variables. These errors may grow in time,
and if such growth is of an exponential rate, the behavior of the variable
is defined as unstable. However, the overall effect of an unstable variable
upon the dynamical system is not necessarily destructive. Indeed, there al-
ways exists such a group of variables that do not contribute to the energy
of the system. In mechanics such variables are called ignorable or cyclic.
Usually, an ignorable variable characterizes orientations of a vector or a
tensor with respect to a certain frame of reference. An exponential growth
of such a variable does not violate the boundedness of the energy, so even
if the instability persists, the system still continues to function. However,
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its behavior can be significantly different from the pre-instability state in
the same way in which a turbulent flow is different from a laminar one.
If the original system is conservative (for instance, as a set of molecules
in a potential field), its post-instability behavior may attain some dissipa-
tive features: the mean, or regular component characterizing macroscopic
properties will loose some portion of its initial energy to irregular fluctu-
ations, and this will lead to irreversibility of the motion, despite the fact
that the original system was fully reversible. Hence, the instability of ignor-
able variables can “convert” a deterministic process into a stochastic one
whose mean behavior is significantly different from the original one. Based
upon this paradigm one can introduce a chain of irreversible processes of
increasing complexity which can be interpreted as an evolutionary process.

When dynamical models simulate biological, or social behavior, they
should include the concept of “discrete events”, i.e., special critical states
which give rise to branching solutions, or to bifurcations. To attain this
property, such systems must contain a “clock” — a dynamical device that
generates a global rhythm. During the first half of the “clock’s” period,
a critical point is stable, and therefore, it attracts the solution; during
the second half of this period, the “clock” destabilizes the critical point,
and the solution escapes it in one of several possible directions. Obviously,
the condition of uniqueness of the solution at the critical points must be
relaxed. Thus, driven by alternating stability and instability effects, such
systems perform a random walk-like behavior whose complexity can match
the complexity of biological and social worlds.

Finally, based upon these paradigms, one can develop a phenomenologi-
cal approach to cognition to include “quantum-like” features.
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Introduction

Certainly no subject or field is making more progress on so
many fronts at the present moment, than biology... -R. Feynman

The beginnings of the 20th century witnessed a curious development in
the history of science. The applications of statistics to the diverse phenom-
ena of the biological and social sciences were about to explode as a result
of the work of such people as Pearson and Fisher. On the other hand, the
world of physical sciences was still avoiding the use of stochastic models,
although Boltzmann and Gibbs had supplied sufficient reason not to do
so. Now, near the end of the 20th century, the state of affairs has changed
considerably. The physical sciences have come to appreciate the significant
insights into low dimensional systems which appear random, while at the
same time, the biological and social sciences are increasingly interested in
deterministic descriptions of what appear to be very complex phenomena.
The intersection of these two approaches would appear to be the often ne-
glected, sometimes unwanted phenomenon of “noise.” Often relegated to
status as nuisance, noise has become more appreciated really as “that which
we cannot explain.” And in this explanation noise has become recognized
as a possible deterministic system itself, perhaps involved with quantum
effects, with a complicated description that interacts with observables on a
variety of length scales. At the juncture between the physical and biological
this noise creates myriad effects which ultimately redound to the very basic
ideas regarding the constitution of what we know as living matter.

That this should be so is not surprising. Although it was not that long
ago that scientists felt that a understanding of classical Newtonian laws of



2 2. Introduction

motion could provide the key to understanding all of existence, the current
climate appreciates that with some modifications, this might still be true:
the movements of ions through cellular channels are being investigated by
biologists with a seriousness that would be the envy of an experimental
physicist. Indeed some of the very time-honored models of the physical sci-
ences such as spin lattices are being used to explore this area. And why not?
At this level the very fundamental laws of physics control discrete molecular
events which have profound importance for living tissues. Ultimately, the
dynamics at this level govern the way neurons, and other humoral agents
orchestrate the myriad events to maintain the human organism. “Neural
nets” are once again being studied as true models of the nervous system,
not only by biologists, but by physicists as well.

The flurry of activity in this broad area is not unremarkable given that
biological systems are often poorly defined. Until the present, most of our
understanding of biological systems has been defined by phenomenological
descriptions guided by statistical results. Linear models with little consider-
ation of underlying processes have tended to inform such processes. What is
more frustrating has been the failure of such models to explain transitional,
and apparently aperiodic changes of observed records. The resurgence of
nonlinear dynamics has provided an opportunity to explain these processes
more systematically, and with a formal explanation of transitional phenom-
ena.

Certainly, nonlinear dynamics is not a panacea. Linear descriptions do, in
fact, account for many biological and social processes. Additionally, there is
the danger to assume that chaotic correspondence with experimental data
“explains” the system. Scientists are all too familiar with the pitfalls of
model-making. Mathematics is the language of science, but the language is
not the science. Physics itself is replete with examples of this tension be-
tween mathematics and reality. Consider for example the debates regarding
delta functions, and “infinitesimals.” It was Einstein himself who cautioned
about the interface between mathematics and the physical sciences (Ein-
stein 1983).

At the same time there is the ever present concern that by learning
about the intricacies of the processes, we neglect the global kinetics of a
system. Continuing evidence suggests that there is a constant interplay
between microscopic and macroscopic length scales, as well as randomness
to create enormous variety and patterns in biology. And perhaps this is
the important point that has emerged in this last decade of the century:
we have traditionally maintained a perspective of looking for order, and
disregarding randomness and instability as a nuisance; whereas the correct
perspective may be to see this nuisance as an active process which informs
order and vice versa.

The perspective we take here is to attempt to understand biological sys-
tems in a unique way, and this unique way involves the admittance of sin-
gularities both mathematically and biologically. In this endeavor we refer
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to the comments made by James Clerk Maxwell over a century ago when
he pointed out (Campbell and Garnett 1884): “Every existence above a
certain rank has its singular points: the higher the rank the more of them.
At these points, influences whose physical magnitude is too small to be
taken account of by a finite being, may produce results of the greatest im-
portance. All great results produced by human endeavor depend on taking
advantage of these singular states when they occur.”

Certainly, biological organisms are of a high rank, and indeed, many of
these singularities have already been uncovered. From a topological per-
spective Winfree (1987) has demonstrated time and again that biological
oscillators admit singularities. Other work has argued from first principles
and experimentation that physiological singularities must exist in order for
the organisms to maintain adaptability (Zbilut et al. 1996, Zbilut et al.
1995). What has not been adequately appreciated is the reconciliation be-
tween classical Newtonian dynamics and these biological phenomena. This
monograph represents a modest attempt in this direction. In order to pro-
ceed, certain problems in classical dynamics need to be highlighted.

Classical dynamics describes processes in which the future can be de-
rived from the past, and past can be traced from future by time inversion.
Because of such determinism, classical dynamics becomes fully predictable,
and therefore it cannot explain the emergence of new dynamical patterns
in nature, in biological, and in social systems. This major flaw in classical
dynamics has attracted attention of many outstanding scientists (Gibbs,
Planck, Prigogine, etc.). Recent progress in understanding the phenom-
enology of nonlinear dynamical systems was stressed by the discovery and
intensive studies of chaos which, in a addition to a fundamental theoretical
impact, has become a useful tool for several applied methodologies. How-
ever, the, actual theory of chaos has raised more questions than answers.
Indeed, how fully deterministic dynamical equations with small uncertain-
ties in initial conditions can produce random solutions with a stable proba-
bilistic structure? And how this structure can be predicted? What role does
chaos play in information processing performed by biological systems? Does
it contribute into elements of creativity, or irrationality (or both!) in the
activity of a human brain? All these questions, and many others which are
related to them, will be discussed in this monograph.

The monograph treats unpredictability in nonlinear dynamics, and its
applications to information processing. The main emphasis is on intrinsic
stochasticity caused by the instability of governing dynamical equations.
This approach is based upon a revision of the mathematical formalism of
Newtonian dynamics, and, in particular, upon elimination of requirements
concerning differentiability, which is some cases lead to unrealistic solutions.

This new mathematical formalism allows us to reevaluate our view on the
origin of chaos and turbulence, on prediction of their probabilistic struc-
tures, and on their role in information processing in biological systems.



