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PREFACE

We all have witnessed the regular placing into orbit of mechanically complex
satellites with moving parts and appendages. On earth, the production line has been
changed toward an increasing usage of intricate robotic devices involving many
interconnected bodies. These developments serve to emphasize the need for an
understanding of dynamics which goes beyond the elementary level. The aim and
purpose of this textbook is to present general theory and illustrative examples, as
well as homework problems, in such a manner that the student may attain a real
comprehension of the subject at the intermediate level.

It is assumed that the students using this text will have the academic maturity
of first-year graduate students or of well-prepared undergraduate seniors. The
presentation of the material favors a problem-oriented course which emphasizes the
ability to combine theories from the various chapters and to use differential
equations in the solution of problems.

An attempt has been made to present the basic theory in a very general
manner by applying it first to systems of particles and then to idealized bodies such
as rods and disks, and finally to more general rigid bodies and systems of rigid
bodies. Consequently, the examples and problems are general in nature, for the
most part, and are not slanted toward any particular area of application.

The introductory chapter reviews some of the basic concepts of Newtonian
mechanics. There is a discussion of units and their definitions, with the SI system
of units being adopted. There is also a first elementary presentation of d’Alembert’s
principle.

One of the principal sources of difficulty for students of dynamics lies in the
subject of kinematics. Therefore, the kinematical foundations of particle motion are

vii



viii Preface

discussed rather thoroughly in Chapter 2. Motion in a plane and also general
three-dimensional motion are included. Particular attention is given to rotating
reference frames and to vector derivatives relative to these frames.

Chapters 3 and 4 are devoted to a general vectorial development of the
dynamics of a single particle and of systems of particles. These chapters form the
theoretical base upon which much of later developments depends.

Orbital motion is the subject of Chapter 5. The discussion is almost entirely
limited to motion in an inverse-square gravitational field. In addition to the
derivation of orbital trajectories, some attention is given to the time of flight, the
determination of the orbital elements, and to elementary perturbation theory.

Beginning with Chapter 6, extensive use is made of the Lagrangian method of
formulating the equations of motion. Because of their great importance in the
theoretical development of analytical dynamics, the ideas of virtual displacements
and virtual work are carefully presented. The mathematical description of
constrained systems is discussed, and the explicit forms of the equations of motion
for holonomic and nonholonomic systems are given.

Chapter 7 is concerned primarily with the kinematics and planar dynamics of
rigid body motion. Matrix and dyadic notations are introduced in the context of
the rotational inertial properties of rigid bodies and the associated eigenvalue
problem. The rotation matrix and Eulerian angles are also discussed.

The three-dimensional rotational dynamics of one or more rigid bodies is the
subject of Chapter 8. It is in this chapter that many of the theories developed
previously are combined in the analysis of relatively complex dynamical motions.
The free and forced motions of rigid bodies are discussed. A general form of
d’Alembert’s principle is used to obtain the equations of motion for systems of
rigid bodies.

The final chapter is concerned with vibration theory. The associated
eigenvalue problem is applied to linear, or linearized, systems having n degrees of
freedom. Other topics such as Rayleigh’s principle, the use of symmetry, and the
free and forced vibrations of damped systems are also included.

The material contained in this text can be covered in about four semester
hours, assuming that part of the class time is allotted to problem discussions. For a
course of three semester hours, all of Chapter 5 except perturbation theory and
most of Chapter 9 can be omitted without seriously affecting the continuity of the
presentation.

In conclusion, I wish to thank my wife who typed the manuscript, helped
with the proofreading, and performed various other chores in the process of
accomplishing this revision.

Ann Arbor, Michigan Donald T. Greenwood



CONTENTS

PREFACE vil
INTRODUCTORY CONCEPTS 1
1-1  Elements of Vector Analysis 2
1-2  Newton’s Laws of Motion 11
1-3  Unats 14
1-4  The Basis of Newtonian Mechanics 18
1-5  D’Alembert’s Principle 23
References 25
Problems 25
KINEMATICS OF A PARTICLE 27
2-1  Position, Velocity, and Acceleration of a Point 28
2-2  Angular Velocity 29
2-3  Rigid Body Motion About a Fixed Point 30
2-4  Time Derivative of a Unit Vector 32 ‘
2-5  Velocity and Acceleration of a Particle in Several

Coordinate Systems 33



iv i g s Contents

2-6  Simple Motions of a Point 38
2-7  Velocity and Acceleration of a Point in a Rigid Body 44
2-8  Vector Derivatives in Rotating Systems 45
2-9  Motion of a Particle in a Moving Coordinate System 48
2-10 Plane Motion 50
2-11 Examples 55

References 62

Problems 62

DYNAMICS OF A PARTICLE 68

3-1  Diurect Integration of the Equations of Motion 69
3-2  Work and Kinetic Energy 80
3-3  Conservative Forces 83
3—-4  Potential Energy 84
3-5  Linear Impulse and Momentum 93
3-6  Angular Momentum and Angular Impulse 96
3-7  The Mass-Spring-Damper System 100
3-8  Coulomb Friction 114
3-9  The Simple Pendulum 119
3-10 Examples 123
References 129
Problems 129

DYNAMICS OF A SYSTEM OF PARTICLES 135

4-1  The Equations of Motion 135
4-2  Work and Kinetic Energy 137
4-3  Conservation of Mechanical Energy 140
4-4  Linear Impulse and Momentum 145
4-5  Angular Momentum 146
4-6  Angular Impulse 156
4-7  Collisions 157
4-8  The Rocket Problem 165
4-9  Examples 178
References 181
Problems 181



Contents 8 8 6 1 9 1 O v

5 ORBITAL MOTION 189

5-1 Kepler’s Laws and Newton’s Law of Gravitation 189
5-2 The Two-Body Problem 196
5-3 The Geometry of Conic Sections 202
5-4  Orbital Relationships 205
5-5  Time and Position 209
5-6 Satellite Orbits About the Earth 212
5-7  Elementary Perturbation Theory 220
5-8  Examples 226
References 235
Problems 235

6 LAGRANGE’S EQUATIONS 239

6-1  Degrees of Freedom 239
6-2  Generalized Coordinates 241
6-3  Constraints 242
6—4  Virtual Work 246
6-5 Generalized Forces 259
6-6  Derivation of Lagrange’s Equations 262
6—7  Lagrange Multipliers 280
6—8  Conservative Systems 287
References 291
Problems 291

7 BASIC CONCEPTS AND KINEMATICS OF RIGID BODY
MOTION 299

7-1  Degrees of Freedom of a Rigid Body 299
7-2  Moments of Inertia 301

7-3  Matrix Notation 306

7-4  Kinetic Energy 313

7-5  Dyadic Notation 315

7—6  Translation of Coordinate Axes 318

7-7  Rotation of Coordinate Axes 320

7-8  Principal Axes 323



vi

7-9

7-10
7-11
7-12
7-13
7-14

Displacements of a Rigid Body 337

Axis and Angle of Rotation 341

Reduction of Forces 344

Infinitesimal Rotations 350

Eulerian Angles 354

Examples of Rigid Body Motion in a Plane 358
References 377

Problems 378

DYNAMICS OF A RIGID BODY

8-1
8-2
8-3
8—4
8-5
8—6
8-7
8-8

General Equations of Motion 389

Equations of Motion in Terms of Eulerian Angles 405
Free Motion of a Rigid Body 408

The Poinsot Method 416

The Motion of a Top 421

Other Methods for Axially Symmetric Bodies 437
D’Alembert’s Principle and Rigid-Body Motion 446
Examples 454

References 468

Problems 468

VIBRATION THEORY

9-1  Review of Systems with One Degree of Freedom 478
9-2  Equations of Motion 482
9-3  Free Vibrations of a Conservative System 486
9—-4  The Use of Symmetry 503
9-5  Forced Vibrations of a Conservative System 517
9-6  Vibrations with Damping 522

References 526

Problems 526
APPENDICES
A. Inertial Properties of Homogeneous Bodies 533
B. Answers to Selected Problems 537

INDEX

Contents

389

477

533

547



INTRODUCTORY
CONCEPTS

The science of mechanics is concerned with the study of the interactions of
material bodies. Dynamics is that branch of mechanics which consists of the study
of the motions of interacting bodies and the description of these motions in terms
of postulated laws.

In this book we shall concentrate on the dynamical aspects of Newtonian or
classical nonrelativistic mechanics. By omitting quantum mechanics, we eliminate
the study of the interactions of elementary particles on the atomic or nuclear
scale. Further, by omitting relativistic effects, we eliminate from consideration
those interactions involving relative speeds approaching the velocity of light,
whether they occur on an atomic or on a cosmical scale. Nor shall we consider the
very large systems studied by astronomers and cosmologists, involving questions
of long-range gravitation and the curvature of space.

Nevertheless, over a broad range of system dimensions and velocities,
Newtonian mechanics is found to be in excellent agreement with observation. It is
remarkable that three centuries ago, Newton, aided by the discoveries of Galileo
and other predecessors, was able to state these basic laws of motion and the law
of gravitation in essentially the same form as they are used at present. Upon this
basis, using the mathematical and physical discoveries and notational improve-
ments of later investigators, we shall present a modern version of classical
dynamics. In the process, we shall employ two general approaches, namely, the
vectorial dynamics of Newton’s laws and the analytical dynamics exemplified by
Lagrange’s equations.
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1-1 ELEMENTS OF VECTOR ANALYSIS
Scalars, Vectors, and Tensors

Newtonian mechanics is, to a considerable extent, vectorial in nature. Its basic
equation relates the applied force and the acceleration (both vector quantities) in
terms of a scalar constant of proportionality called the mass. In contrast to
Newton’s vectorial approach, Euler, Lagrange, and Hamilton later emphasized
the analytical or algebraic approach in which the differential equations of motion
are obtained by performing certain operations on a scalar function, thereby
simplifying the analysis in some respects. Our approach to the subject will be
vectorial for the most part, although some of the insights and procedures of
analytical mechanics will also be used.

Because vector operations are so important in the solution of dynamical
problems, we shall review briefly a few of the basic vector operations. First,
however, let us distinguish among scalars, vectors, and other tensors of higher
rank.

A scalar quantity is expressible as a single, real number. Common examples
of scalar quantities are mass, energy, temperature, and time.

A quantity having direction as well as magnitude is called a vector. In
addition, vectors must have certain transformation properties. For example,
vector magnitudes are unchanged after a rotation of axes. Common vector
quantities are force, moment, velocity, and acceleration. If one thinks of a vector
quantity existing in a three-dimensional space, the essential characteristics can be
expressed geometrically by an arrow or a directed line segment of proper
magnitude and direction in that space. But the vector can be expressed equally
well by a group of three real numbers corresponding to the components of the
vector with respect to some frame of reference, for example, a set of Cartesian
axes. If one writes the numbers in a systematic fashion, such as in a column, then
one can develop certain conventions which relate the position in the column to a
given component of the vector. This concept can be extended readily to
mathematical spaces with more than three dimensions. Thus, one can represent a
vector in an n-dimensional space by a column of » numbers.

So far, we have seen that a scalar can be expressed as a single number and
that a vector can be expressed as a column of numbers, that is, as a
one-dimensional array of numbers. Scalars and vectors are each special cases of
tensors. Scalars are classed as tensors of rank zero, whereas vectors are tensors of
rank one. In a similar fashion, a tensor of rank two is expressible as a
two-dimensional array of numbers; a tensor of rank three is expressible as a
three-dimensional array of numbers, and so on. Note, however, that an array
must also have certain transformation properties to be called a tensor. An
example of a tensor of rank two is the inertia tensor which expresses the essential
features of the distribution of mass in a rigid body, as it affects the rotational
motion.

We shall have no occasion to use tensors of rank higher than two; hence no
more than a two-dimensional array of numbers will be needed to express the
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quantities encountered. This circumstance enables us to use matrix notation,
where convenient, rather than the more general but less familiar tensor notation.

For the most part, we shall be considering motions which can be described
mathematically using a space of no more than three dimensions; that is, each
matrix or array will have no more than three rows or columns and each vector
will have no more than three components. An exception will be found in the
study of vibration theory in Chapter 9 where we shall consider eigenvectors in a
multidimensional space.

Types of Vectors

Considering the geometrical interpretation of a vector as a directed line segment,
it is important to recall that its essential features include magnitude and direction,
but not location. This is not to imply that the location of a vector quantity, such as
a force, is irrelevant in a physical sense. The location or point of application can
be very important, and this will be reflected in the details of the mathematical
formulation; for example, in the evaluation of the coefficients in the equations of
motion. Nevertheless, the rules for the mathematical manipulation of vectors do
not involve location; therefore, from the mathematical point of view, the only
quantities of interest are magnitude and direction.

But from the physical point of view, vector quantities can be classified into
three types, namely, free vectors, sliding vectors, and bound vectors. A vector
quantity having the previously discussed characteristics of magnitude and
direction, but no specified location or point of application, is known as a free
vector. An example of a free vector is the translational velocity of a nonrotating
body, this vector specifying the velocity of any point in the body. Another
example is a force vector when considering its effect upon translational motion.

On the other hand, when one considers the effect of a force on the
rotational motion of a rigid body, not only the magnitude and direction of the
force, but also its line of action is important. In this case, the moment acting on
the body depends upon the line of action of the force, but is independent of the
precise point of application along that line. A vector of this sort is known as a
sliding vector.

The third type of vector is the bound vector. In this case, the magnitude,
direction, and point of application are specified. An example of a bound vector is
a force acting on an elastic body, the elastic deformation being dependent upon
the exact location of the force along its line of action.

Note again that all mathematical operations with vectors involve only their
free vector properties of magnitude and direction.

Equality of Vectors. We shall use boldface type to indicate a vector
quantity. For example, A is a vector of magnitude A, where A is a scalar.

Two vectors A and B are equal if A and B have the same magnitude and
direction, that is, if they are represented by parallel line segments of equal length
which are directed in the same sense. It can be seen that the translation of either

A or B, or both, does not alter the equality since they are considered as free
vectors. .
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Unit Vectors. If a positive scalar and a vector are multiplied together (in
either order), the result is another vector having the same direction, but whose
magnitude is multiplied by the scalar factor. Conversely, if a vector is multiplied
by a negative scalar, the direction of the resulting vector is reversed, but the
magnitude is again multiplied by a factor equal to the magnitude of the scalar.
Thus one can always think of a given vector as the product of a scalar magnitude
and a vector of unit length which designates its direction. We can write

A = Ae, (1-1)

where the scalar factor A specifies the magnitude of A and the unit vector e,
shows its direction (Fig. 1-1).

Addition of Vectors. The vectors A and B can be added as shown in Fig.
1-2 to give the resultant vector C. To add B to A, translate B until its origin
coincides with the terminus or arrow of A. The vector sum is indicated by the line
directed from the origin of A to the arrow of B. It can be seen that

C=A+B=B+A (1-2)

since, for either order of addition, the vector C is the same diagonal of the
parallelogram formed by using A and B as sides. This is the parallelogram rule of
vector addition. Since the order of the addition of two vectors is unimportant,
vector addition is said to be commutative.

This procedure can be extended to find the sum of more than two vectors.
For example, a third vector D can be added to the vector C obtained previously,
giving the resultant vector E. From Fig. 1-3, we see that

E=C+D=(A+B)+D (1-3)

But we need not have grouped the vectors in this way. Referring again to Fig.
1-3, we see that

E=A+ (B + D) (1-4)
From Egs. (1-3) and (1-4) we obtain
(A+B)+D=A+(B+D)=A+B+D (1-5)

illustrating that vector addition is associative.

» \/i\
\’/ ’

N

Figure 1-1 A vector and its corresponding Figure 1-2 The parallelogram
unit vector. rule of vector addition.
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Figure 1-3 The polygon rule of
vector addition.

Because of the commutative and associative properties of vector addition,
we can dispense with the parentheses in a series of additions and perform the
additions in any order. Furthermore, using the graphical procedure of Fig. 1-3,
we see that the resultant vector E is drawn from the origin of the first vector A to
the terminus of the last vector D, thus closing the polygon. This generalization of
the parallelogram rule is termed the polygon rule of vector addition. A similar
procedure applies for the case where all vectors do not lie in the same plane.

It is important to note that certain physical quantities that are apparently
vectorial in nature do not qualify as true vectors in the sense that the usual rules
for vector operations do not apply to them. For example, a finite rotational
displacement of a rigid bedy is not a true vector quantity because the order of
successive rotations is important, and therefore it does not follow the commuta-
tive property of vector addition. Further discussion of this topic will be found in
Chapter 7.

Components of a Vector

If a given vector A is equal to the sum of several vectors with differing directions,
these vectors can be considered as component vectors of A. Since component
vectors defined in this way are not unique, it is the usual practice in the case of a
three-dimensional space to specify three directions along which the component
vectors must lie. These directions are indicated by three linearly independent unit
vectors, that is, a set of unit vectors such that none can be expressed as a linear
combination of the others.

Suppose we choose the unit vectors e;, e,, and e; with which to express the
given vector A. Then we can write

A= A1e1 + A2e2 + A3e3 (1-'6)

where the scalar coefficients A;, A,, and A; are now determined uniquely. A4,,
A,, and A, are known as the scalar components, or simply the components, of the
vector A in the given directions.

If another vector B is expressed in terms of the same set of unit vectors, for
example,

B = B]el + Bzez + B3e3 (1—7)
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then the components of the vector sum of A and B are just the sums of the
corresponding components.

A + B = (Al + B])el + (A2 + Bz)ez + (A3 + B3)e3 (1—8)

This result applies, whether or not e, e,, and e; form an orthogonal triad of unit
vectors.

Now consider a case where the unit vectors are mutually orthogonal, as in
the Cartesian coordinate system of Fig. 1-4. The vector A can be expressed in
terms of the scalar components A,, A,, and A,, that is, it can be resolved as
follows:

A=Ai+Aj+AKk (1-9)

where i, j, and k are unit vectors in the directions of the positive x, y, and z axes,
respectively.

From Fig. 1-4, it can be seen that the component vectors A.i, A j, and A k
form the edges of a rectangular parallelepiped whose diagonal is the vector A. A
similar situation occurs for the case of nonorthogonal or skewed unit vectors,
except that the parallelepiped is no longer rectangular. Nevertheless, a vector
along a diagonal of the parallelepiped has its components represented by edge
lengths. In this geometrical construction, we are dealing with free vectors, and it
is customary to place the origins of the vector A and the unit vectors at the origin
of the coordinate system.

It is important to note that, for an orthogonal coordinate system, the
components of a vector are identical with the orthogonal projections of the given
vector onto the coordinate axes. For the case of a skewed coordinate system,
however, the scalar components are not equal, in general, to the corresponding
orthogonal projections. This distinction will be important in the discussions of
Chapter 8 concerning the analysis of rigid body rotation by means of Eulerian
angles; for, in this case, a skewed system of unit vectors is used.

yi

Figure 1-4 The components of a vector
x in a Cartesian coordinate system.
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Scalar Product

Consider the two vectors A and B shown in Fig. 1-5. The scalar product or dot
product is

A-B = ABcos6 (1-10)
Since the cosine function is an even function, it can be seen that
A-B=B-A (1-11)

implying that the scalar multiplication of vectors is commutative.

The scalar product can also be considered as the product of the magnitude
of one vector and the orthogonal projection of the second vector upon it. Now, it
can be seen from Fig. 1-6 that the sum of the projections of vectors A and B onto
a third vector C is equal to the projection of A + B onto C. Therefore, noting
that the multiplication of scalars is distributive, we obtain

(A+B):C=A:-C+B-C (1-12)

Thus, the distributive property applies to the scalar product of vectors.

Now consider the dot product of two vectors A and B, each of which is
expressed in terms of a given set of unit vectors e;, e,, and e;. From Egs. (1-6)
and (1-7), we obtain

A ® B = A131 o A282 + A3B3 = (Ale > AZBl)el €
+ (AlB:; + A3Bl)e1 * €3 = (AzB3 = A3Bz)e2 * €3 (1—'13)
For the common case where the unit vectors form an orthogonal triad, the terms

involving dot products of different unit vectors are all zero. For this case, we see
from Eq. (1-13) that

A-B= AlBl e Asz 2 A3B3 (1—14)
Vector Product

Referring again to Fig. 1-5, we define the vector product or cross product as
follows:

A X B = ABsin0k (1-15)

A

Figure 1-5 Multiplication Figure 1-6 The distributive law for
of two vectors. the dot product.
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where k is a unit vector perpendicular to, and out of, the page. In general, the
direction of k is found by the right-hand rule, that is, it is perpendicular to the
plane of A and B and positive in the direction of advance of a right-hand screw as
it rotates in the sense that carries the first vector A into the second vector B. The
angle of this rotation is 6. It is customary, but not necessary, to limit 6 to the
range 0 = 6 = .

Using the right-hand rule, it can be seen that

AXB=-BXxA (1-16)

indicating that the vector product is not commutative. On the other hand, it can
be shown that the vector product obeys the distributive law, that is,

AXB+C)=AXB+AXC (1-17)
Using the distributive law, we can evaluate the vector product A X B in
terms of the Cartesian components of each. Thus,
AXB=(Ai+ Aj+ AKk) X (Bi + B)jj + Bk) (1-18)
But
iXi=jXj=kXk=0
iXj=—-jXi=k
jXk=-kXj=i
kXi=—-iXk=j

(1-19)

and therefore,
AXB=(AB, — A,B)i+ (A,B, — A,B,)j + (A.B, — A,B,)k (1-20)

This result can be expressed more concisely as the following determinant:

i j k
AXB=|A, A, A, (1-21)
B, B, B,

In general, if the sequence e;, e,, and e; forms a right-handed set of
mutually orthogonal unit vectors, then the vector product can be expressed in
terms of the corresponding components as follows:

€ € €
AXB=|A A, A; (1-22)
B, B, B;

Scalar Triple Product

The product A - (B X C) is known as the scalar triple product. Looking at Fig.
1-7, we see that B X C is a vector whose magnitude is equal to the area of a
parallelogram having B and C as sides and whose direction is perpendicular to the



