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Preface

This book is the written version of my Conference Board of Mathematical
Sciences (CBMS) lectures presented during the week of June 10, 2002, at
Eastern Illinois University in Charleston, Illinois. The ten lectures centered
on my first and persistent academic love—the Newtonian N-body problem.

While some experts actively participated in the sessions, this conference
fully lived up to the intent of the CBMS series in that most of the attendees
were graduate students, new-comers to the field, or curious mathematicians
wishing to learn something about this fascinating topic. Accordingly, the
goals of the lectures quickly changed from a technical presentation appro-
priate primarily for “experts,” to presentations now intended to introduce
everyone to the basic structure of N-body systems, to identify certain per-
sistent research themes, and, hopefully, to recruit active participants to this
fascinating research area. As such, during each lecture several unsolved
research problems were described: some of them are included here.

The new goals for the lectures changed the nature, content, expository
tone, and even the subject matter to make the presentations more respon-
sive to the specific interests of the participants while addressing their many
questions, For instance, I included more introductory material than origi-
nally planned: in retrospect, this was an excellent addition.

The content and approach of this book mimic the changed goals of the
lectures; e.g., in addition to new material, you will find discussions intended
to develop intuition, introductory material, occasional anecdotes, and de-
scriptions of open problems. To provide cohesion for each chapter, some of
the material revolves about unsolved research problems—where the moti-
vating role of the problem may be of more value than the actual problem.
In Chap. 1, for instance, much of the discussion is intended to lead to an un-
resolved issue about the weird dynamics exhibited in the F-ring of Saturn.
In Chap. 2, the discussion is tied together via a conjecture involving the
diameter of the N-body system. In Chap. 3, the unifying problems involve
the important issue of finding certain N-body configurations, which leads to
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a discussion of the rings of Saturn. In Chap. 4, the issue involves collisions.
The concluding Chap. 5 discusses the likelihood of “bad things happening.”
Everyone, from novices to experts, will find something new.

Some results are new, while others have been presented earlier (e.g., at
colloquia, Oberwolfach meetings—particularly several during the 1970s—
Midwest Dynamical Systems meetings, a 1983 month long mini-course given
in Receife, Brazil while visiting Hildeberto Cabral, in a series of lectures
in Paris over 1985-87 hosted by Michael Herman, several informal lectures
during 1989 in Barcelona hosted by Jaume Llibre, etc.,) and even advertised
as “will appear” in fully intended but never completed papers. In other
words, many of these results have not been previously published. As most
authors of a book quickly discover, the hard part is not to decide what
to include, but what to exclude—particularly if a book is to be eventually
completed. (Some of the excluded material probably will appear in [90].)

Other results described in this book come from my earlier papers. The
particular journals that published these papers are implicitly acknowledged
and thanked via the references. But my expository paper [88] “A wisit to
the Newtonian n-body via elementary complex variables” is extensively used
to provide structure and motivation for a couple of the chapters, particu-
larly the introductory one, so I want to explicitly thank the MAA for their
permission to use it in this manner.

My deep thanks and appreciation go to Patrick Coulton, the chair for
this particular CBMS conference, and my long-time friend Gregory Galprin
for inviting me to be the CBMS lecturer and for their efforts to assemble
a successful CBMS application. I also thank them for their full and active
participation in all lectures and extra sessions that they helped to organize,
and for everything they did to make the stay so enjoyable for all of us. I want
to thank all of the participants for keeping the workshop sessions so lively!
My thanks to the Mathematics Department at Eastern Illinois University
for their gracious hospitality. My thanks to Ron Rosier and the CBMS
for their program that makes these kinds of lectures possible. Thanks to
Neal Hulkower: twice at Northwestern he took my year long course on the
Newtonian N-body problem (the first in 1969-70), and he still had both sets
of lecture notes! His notes proved to be useful in recovering some of my
earlier results and arguments. Also thanks to another student (but I do not
recall who it was) who gave me a copy of his notes many years ago.

Irvine, California
January, 2005
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Chapter 1

Introduction

Simply stated, the “Newtonian N-body problem” is the mathematical study
of how heavily bodies move in settings where the dynamics are dictated by
Newton’s law of motion. In practical terms, this area now includes just
about any dynamical system that even remotely resembles Newton’s law.
Beyond the insight the subject provides for understanding astronomical
issues, the Newtonian N-body problem has historically served as a source
of mathematical discovery and new problems. The purpose of this book is
to introduce the reader to a selective portion of issues about the Newtonian
N-body problem while outlining and describing some open problems.!

1.1 Mars

How do the heavenly bodies move? A quick introduction can be provided by
using elementary complex variables to describe some simple orbits. The ul-
timate purpose of this exercise is to show how surprising levels of complexity
can arise even in particularly “nice” and “well behaved” settings. Later in
this chapter, these orbits are used to describe and motivate an open research
problem.

Start with a mystery that most surely bothered generations of school
kids: it most certainly troubled me when I was in the fourth grade. It
involves the story of Galileo being forced to recant his views that the Sun,
rather than Earth, is the center of the solar system. Even a child can
appreciate the fact that if the church felt it was necessary to force Galileo
to recant, then the stakes in the issue must have been high. But, what

! A companion book [90] is being prepared that addresses issues other than those de-
scribed here.



2 CHAPTER 1. INTRODUCTION

difference does it make if the Sun revolves about the Earth, or the Earth
about the Sun? After all, whichever occurs, one forms the center of a circular
motion for the other. Why should we care which is which?

scth, zglt) = S

Mars, zp(t) = 3e™

Fig. 1.1. Sun-Earth-Mars coordinates in half-astronomical units

1.1.1 Motion of Mars

To explain the kinds of difficulties that are introduced by an Earth-centered
prejudice, start with the Sun as the center of our solar system. A simplified
story has Mars approximately 3/2 times (actually, about 1.524 times) as far
from the Sun as the Earth, and Mars takes approximately two years (about
687 Earth days) to complete its journey about the Sun.

To keep everything simple, eliminate fractions by replacing the standard
astronomical unit (the distance between the Earth and the Sun) with what I
call “half-astronomical” units. In the new system, which is depicted in Fig.
1.1, the Earth is two units from the Sun, and Mars is three. Using complex
variables, a reasonable description of the motion of the Earth is given by
zp(t) = 2e*™ while that of Mars is 23, = 3e™*.

Finding the orbit of Mars relative to the Earth now is simple; it is

2(t) = zpm(t) — zg(t) = 3™ — 227, (1.1
To describe this orbit, add and subtract the distance to the Sun to obtain

2(t) = 3™ —2e2™ — 2 4 2 = 2 4 e™#[3 — 2e™t — 2]

=2+ [3 — 4 cos(mt)]e™™. (1.2)

According to Eq. 1.2, the graph of this equation, as given in Fig. 1.2, depicts
the surprisingly complicated orbit of Mars when viewed relative to that of
the Earth: it is a limacon with a nicely defined loop.?

2In my introductory calculus courses, I often use the trigonometric version of this
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Fig. 1.2. Apparent motion of Mars relative to the Earth

Figure 1.2 makes it clear why the pre-Copernican, Earth-centered preju-
dice made it so difficult to predict the motion of the planets and to develop
a “Newtonian Theory.” For a segment of time on this orbit, everything is
regular. Indeed, starting at the point where the loop intersects itself, Mars
starts on its long journey moving away from the Earth until eventually it
is five half-astronomical units away. (This position corresponds to where
Earth and Mars are on opposite sides of the Sun.) The interesting, coun-
terintuitive action starts when Mars returns to begin its close approach to
the Earth. First, it quickly swoops in a radical plunge toward the Earth.
But rather than colliding, Mars suddenly reverses direction to swoop out—
a motion suggesting that the physics—for some strange reason—suddenly
changes to a law of repulsion rather than attraction. Finally Mars changes
direction once more so that it can repeat its long two-year journey.

Imagine the difficulty in determining the appropriate force law—a law
that resembles some form of attraction for most of the journey only to sud-
denly become a law of repulsion when Mars approaches Earth, and then
reverts back into a law of attraction. Other than resorting to bad jokes
about the annoyance of Earthling’s politics or their behavior, how does one
explain the sudden repulsion of Mars when it starts approaching Earth?
In other words, the change of variables from a Earth-centered to a Sun-
centered system makes a considerable difference: without it, it is difficult to

example to put life into those mandatory reviews of trigonometry. The trigonometric ver-
sion just uses double angle formulae; e.g., (3 cos(nt), 3sin(nt)) — 2(cos(27t), 2sin(27t)) =
(2,0) + p(cos(wt),sin(nt)) where p = 3 — 4 cos(mt).
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even imagine how Newton’s laws of attraction could have been developed.

Incidentally, it is easy to observe this retrograde behavior of Mars. Of
course, the change in distance between Earth and Mars cannot be detected
by the untrained naked eye, but the change in direction—where Mars ap-
pears to be moving in one direction, stops and moves backwards, and then
stops again to return to its original direction—is quite apparent over the
span of several nights. During those periods when Mars approaches Earth
to start its dipping behavior, even a casual observer can notice how at a
fixed time each night the position of Mars swings to define, over a period of
days, a compressed “Z.”

P E
i Aajﬁa’\‘\
T

Qo 2>

Fig. 1.3. Apparent orbit of a planet 9 times farther from the Sun

While the apparent motion of Mars offers surprising behavior, the orbits
of the planets farther from the Sun adopt a much more complicated appear-
ance with the several loops as indicated in Fig. 1.3. This figure depicts the
apparent behavior of a planet nine AU away from the Sun: a distance that
is a bit short of Saturn’s actual orbit. Rather than developing a compli-
cated version of the above description, a different elementary approach is
described next.

1.1.2 The “far out” planets

Consider the circular orbit of a far-out planet—Mars, Saturn, or beyond—
given by zp(t) = ae®™ where the value of a > 3 defines the distance from
the Sun in our half-astronomical units: the « values are discussed below.
After expressing this

2(t) = zp(t) — 2p(t) = ae® ™ — 2e2™%, (1.3)
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orbit of the planet relative to the Earth in the usual complex variable form
of z(t) = r(t)e’®®, a way to determine whether the orbit is moving in a
clockwise or counter-clockwise manner (relative to the Earth) is to examine
the sign of ¢'(t).
s . : : Z ’ :

The sign of #'(t) is the imaginary part of (In 2p(t))’ = ;& = T-+16". But

since PR
/ s — Q)T
) Zp _ mi(ac —4e )
(n zp(t) = 22 =

it follows from the form of the numerator that the sign of # must change
periodically whenever aa < 4.

The reason this aar < 4 inequality must hold for all of the planets that
are farther from the Sun than the Earth is Kepler’s third law. This law
asserts that

b (1'4)

aa =k (1.5)

where k is a constant. Consequently, acx = (g)l/ 2 is a decreasing function

of a: remember, a is the distance of the planet to the Sun. Thus, for a
planet sufficiently far from the Sun, we must expect its orbit to experience
loops when expressed relative to the Earth. According to Eq. 1.4, the loop
occurs whenever the distance between the Earth and the planet decreases
toward a (local) minimal value. But because those far-out planets take from
decades to a couple of Earth centuries to circle the Sun,? it follows that their
apparent orbits must exhibit many loops.

A natural related question, which is needed for later purposes, is to
determine how far a planet must be beyond the Earth so that its apparent
orbit has a loop. Using the units of the Earth, a = 2, o« = 2, we have that
k = 32 for Eq. 1.5. Thus, a3a?® = 32, or the crucial parameter has the value
aa = [32/ a]%. Because apparent loops occur when aa < 4, it follows that
these loops occur when [32/ a]% < 4, or when a > 2. Restated in words,

the apparent motion of any planet that is farther from the Sun
than the Farth has a loop.

Of course, this assertion holds for all bodies governed by Newton’s equation:
this fact plays a key role in the discussion about the rings of Saturn given
in the last section of this chapter.

Notice how this simple argument just describes a circular uniform motion
relative to another circular uniform orbit. The importance of this comment

3While Venus takes only about 224 Earth days to circle the Sun, Jupiter takes 4332
(about 11.9 Earth years), Saturn 10,760 (about 29.5 years), Uranus 30,685 (about 84
years), Neptune 60,190 (about 165 years), and Pluto 90,800 days (about 249 years).



