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CHAPTER 1 SOLUTIONS

Problem 1-1.

a. The overload point of the A/D converter (largest signal that can be accommodated) will be chosen on the basis of the signal
statistics and the signal power so as to keep the probability of overload low. Assuming the signal doesn’t change, we would want
to keep the overload fixed. Hence, the A would be halved.

b. Generally the error signal would be halved in amplitude. This would increase the SNR by 20log; o2 = 6 dB.
c. The bit rate would increase by f,, the sampling rate.
d. We get, for some constant X,

SNR=6n+K, fy=nf,, (1.1)
and thus
6
SNR =—J{—" +K. 1.2)

In particular, the SNR in dB is directly proportional to the bit rate.

Problem 1-2. Each bit error will cause one recovered sample to be the wrong amplitude, which is similar to an added impulse to
the signal. This will be perceived as a "pop" or a "click". The size of this impulse will depend on which of the n bits of a partic-
ular sample is in error. The error will range from the smallest quantization interval (the least-significant bit in error) to the entire
range of signal levels (the sign bit in error).

Problem 1-3. The most significant sources will be the anti-aliasing and reconstruction lowpass filters, which will have some
group delay, and the propagation delay on the communication medium. Any multiplexes (chapter 16) will introduce a small
amount of delay, as will digital switches (chapter 16).

Problem 1-4. Assume the constant bit rate is larger than the peak bit rate of the source. Then we might artificially increase the
bit rate of the source up until it precisely equals the bit rate of the link by adding extra bits. We must have some way of identify-
ing these extra bits at the receiver so that they can be removed. A number of schemes are possible, so here is but one: Divide the
source bits in to groups called packets with arbitrary length. Append a unique sequence of eight bits, called a flag, to the begin-
ning and end of each packet, and transmit these packets on the link interspersed with an idle code (say all zeros). The only prob-
lem now is to insure that the flag does not occur in the input bit stream. This can be accomplished using coding, with techniques
described in chapter 16.
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Exercise 2-1. Addition of two complex-valued signals is illustrated below:

20— Re(x() ) Re(x(1) (1))
x@)+y(@) Im{x()} Nan Im{x(®) +y (@)}
y()
Re{y®)}
Im{y(@)}
and multiplication below:
x(t) " . Re{x(t)} Re{x(t)y(r)}
x@y () HilEs] -
y(@)

Re(y(1)) " Im({x(t)y () )

Complex addition is accomplished by two real additions, and complex multiplication by four real multiplications and two real
additions.

Exercise 2-2. A complex system with a real-valued input:

Re{x(t)} Re{h(t)}] Re{y®}

O L e =29

T h(e) ) —228))

A real system with a complex-valued input:

Re{x(t)) Re{h(t)) Re{y(®)}

x(t) S ha) _&

Im{x(t)} Re( ()] Im{y()}
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Exercise 2-3. We can treat the convolution x (¢ ) % (¢ ) just like complex multiplication, since the convolution operation is linear
— an integration. To check linearity, for a complex constant A and two input signals x ,(¢) and x (¢ ),

x1(E)+Ax () *h(t)=x,(t)%h () +A(xo(t)%h (1)) (2.65)
following the rules of complex arithmetic. This establishes linearity.
Exercise 2-4.

Yo = [ [r@mx@ - t)dted®ar . (2.66)
Observe that
e i = g-jaty—jait -1) 2.67)
so that

Y@= [h@emdt [x(t - t)ei% -0t

(2.68)
=H(joX (o)
after a change of variables.
Exercise 2-5. Take the Fourier transform of both sides of (2.2), getting
X(Gw)= I Y, X 8(t—mT e 7®dt
-0 M =—o00
= Y % I&(t—mT)e‘f“"d: (2.69)
Mo e
= Y, xnedomT = X (ejT),
m =—co
Exercise 2-6. The impulse response of the system is
fe=f(kT) (2.70)
and hence (2.15) gives the transfer function directly,
; 1 ,
Fe*)= L3 Fli@@+mZZy. @71)
TS T
Exercise 2-7. Given X (jw) =0 for all |o| > T, (2.15) implies that
X(efﬂ)=-;—XUm) forall 1ol < 2. 2.72)
To get x(¢) from x;, therefore, we can use
. T; lol<wT 273
FGo)= 0; otherwise %E)
in figure 2-1.
Exercise 2-8. First show that § < oo implies BIBO.
Vel =1 3 hpXiem! SL Y, 1hpl =LS <oo. (2.74)
m =-—oo m=-o0
Then show that if S = o there exists a bounded input such that the output is unbounded. Such an input is
ho™t\h |y k suchthat by #0
X = (2.75)

0; k suchthath, =0 °
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Exercise 2-9. For all complex z such that 1zl <1

- 0 0 -
| Zh,,z"‘l:l Zh,,z“"ls Zlh,z“*ls Y, Ikl <o (2.76)
k =—o0 k=—c0 k=—oo k =—o0
Exercise 2-10. The zero vector is
0<—>(---0,---,0..) 2.77)
or
0<—>y()=0. (2.78)

The rest is a tedious but straightforward verification of the properties.
Exercise 2-11. This is a straightforward evaluation. For example,

<XX>= [y @) = (Jx@)y ()d) = <XY>". (2.79)

Exercise 2-12. Let Y ¢ M, then
HX-Y 2= 1X - Pu(X) + Py(X)-YII?

(2.80)
= I1X = Py (X) 12+ Py (X)-Y 12+ 2<X~-Py (X),Py (X) - Y>
Since (Py(X) — Y)eEM and (X—Py (X)) is orthogonal to the subspace M, the last term is 0 and
IX-Y 2= IX-P 12+ IPy(X)-Y1I2
u(X) u(X) 2.81)

21X - Py(X)NI2
with equality if and only if Y = Py /(X).

Exercise 2-13. The inequality is obviously true (with equality) if X = 0 or Y =0, so assume that X # 0 and Y # 0. Then we have
the inequality

o< lIX-oYl?
. (2.83)
0< IXII2=2Re{ 0" <X,Y> } + lal2l Y112
If we let
<X,Y>
Tonyn? 285)
then the previous inequality becomes
1<X,Y>I2
0 IXI2———=—— 2.86
nynz (256

from which the Schwartz inequality follows immediately.

Problem 2-1. We start out with an easy problem! Looking at figure 2-2, when the imaginary part of the impulse response is
zero, we see that the system consists of two independent filters, one for real part and one for imaginary part of the input, with no
crosstalk. The imaginary part of the impulse response results in crosstalk between the real and imaginary parts.

Problem 2-2. Doing the discrete-time part only, write the convolution sum when the input is ejo T

=Y e/ Thy . (2.87)

m =—oo

Changing variables,

= T elu=T,
2

- (2.88)
=gl Y gmionTh,
The output is the same complex exponential multiplied by a sum that is a function of the impulse response of the system 4, and
the frequency o of the input, but is not a function of the time index k. This frequency response or transfer function

H(eloT)= E‘, e Th, (2.89)

n=—co
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is recognized as the Fourier transform of the discrete-time signal A,.
Problem 2-3. The output of the impulse generator is defined as

wt)= Y w(k)o(t —kT). (2.90)

k=—co

Y(jo)=F (o) i wie ~ ST
et

(2.91)
=F(o)H(e f“”)-% Y, G(j(o+ mz—;‘t))X(j(u)+ mZ?n))
b. Yes, you can see from a. that if we add two input signals, the output will be a similar superposition.
c. fF(jw)=0for ol > 7T then for |o| <wT we have
; | i : ;
Y(o)=rF(oH (e’“T)G (j )X (j ®) (2.92)
and the system is time-invariant with transfer function -;—;F ( 0)H (/TG (j w).
Problem 2-4. In continuous-time:
[1x@)1%dt =F1T. |}(x)x‘(:)]m=°
I U .o
= [anom)*x ( ](o)L:o (2.93)
1w
= EiIX(lco)l’dm.
Discrete-time follows similarly.
Problem 2-5. We get that the energy of the discrete-time signal is
~nT
2. T ; 2m 02
);“, 1% 12= 2n_£ﬂl§,¥(;(m+mT))l do (294)

and there is evidently no way to relate this to the energy of the continuous-time signal. However, if the continuous-time signal is
properly bandlimited, then the sum inside the integral includes one term, and the right hand side is proportional to the energy. In
fact, the energy of the discrete-time signal in this case is 1/7°2 times the energy of the continuous-time signal. As the sampling
rate increases, the energy of the discrete-time signal grows without bound, since we have more and more samples in the summa-
tion.

Problem 2-6. The transfer function is H(z)=1+2"" or H(e/*T)=1+¢~7*T. The output is y; = A cos(wkT + 6) where the
magnitude response is A = V2(1 + cos(,T')) and the phase response is

ool ol

ot | @) ]| 2GR |

=tan m =tan —T. (2.95)
Zoosz(T)

The phase is linear in .
Problem 2-7. The Fourier transform of a real system is conjugate symmetric, so

H(jw)=A(0)e’®® = H*(—j 0) = A (0)e %), (2.96)
since A (0) = | H (j ®)| is both non-negative and symmetric. Hence, 6(w) = -0(—w).



6 DIGITAL COMMUNICATION

Problem 2-8. From problem 2-7 the phase response of a real system is anti-symmetric, so the transfer function of the phase
shifter should be

H (j ®) = e 78 = cos(0) + j sgn(w)sin(), 2.97)
where we have used the symmetry and anti-symmetry of the cos and sin, respectively. This becomes
k(1) = 8(t)cos(8) — —-sin(®). 298)
Problem 2-9. If Re{ o} > 0, then we can use the Fourier transform pair
1 ;
= —> Y (j @) = 21e “u (- 29
y@®) ro (o) u(-w) (2.99)

where u () is the unit step function. Then we observe that x (¢) is y (¢) convolved with an impulse stream Y, §(¢—mT), so its

transform is B
X(o)= Y(;w)ZT" > 8«»—3;‘-—»;)
o O 5 e (2.100)
B — R Yo ZmaT
T ..;-8(0) T m)e .
If Re{ & } =0, then we can use the transform of 1/jt, convolving it again with an impulse stream to get
oM =
2 5 s(w- ZEm)sgn(@). @.101)
T m =—oco T
Problem 2-10. Given Y (j ®) = H (j @)X (j @), then if X (j 0p) = 0 then ¥ (j @) = 0.
Problem 2-11.
I Re(y(®)}
N
-, o,
Yes, this is bandwidth efficient.
Problem 2-12. From (2.6),
Y= X z2"hem. (2.102)
Changing variables,
W= Y z¥"h,=2z% ¥, z7"h, =2*H(2). (2.103)

Because the system is time invariant, H (z) does not depend on k.

Problem 2-13. Let the response to z* be y;. By linearity and problem 2-1, if the input to the system is z**™ then the output is
z™y, = z¥z™. By time invariance the response to that same input is y; . Setting these two responses equal,

Z™ Yk = Yeam (2.104)
and setting k = 0 we get the desired result

Ym =YoZ™. (2.105)
The transfer function is complex number y o, which is evidently a function of z, so we define the notation y o= H (z) to reflect this

property.
Problem 2-14. The Z transform is

X(@z)= i z™a™u,,
= (2.106)
=Y (az7ty".
m=0

For any b such that |51 <1 we have the identity
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Ly pm (2.108)
1- m=0
’ . 1 .
which is easily verified by using long division on the left hand side. Therefore, in the region |z 7!l < Tar the Z transform is
X(z)= ——. (2.109)
1-az~

Outside of this region, the Z transform does not exist. If lal > 1, we easily see from (2.57) that the signal goes to infinity as k
increases. Not coincidentally, the region in which the Z transform exists does not include the unit circle, implying that the
Fourier transform does not exist either.

Problem 2-15. a. If the response of the system to z* is y (¢), then by linearity the response to z'** = zz* is z¥y(t). By time
invariance, the response to z‘** is y (t+x ). Setting these two equal, y (f + u) = t*y(t), and setting t =0, y (1) = y (0)z“.

b.Clearly e =z' if z = ¢*, i.e., if s = j ®, then z = ¢/, a point on the unit circle.

c. Substituting into the convolution,
y®)= [h@x@ -1)dr= Ih(t)e“""dt:e" Jh@e"dr=e"H(s) (2.110)

which implies that H (s) is an eigenvalue of the system.
Problem 2-16. The solution is basically the same as for problem 2-13.
Problem 2-17.

a.
X@)=—= @.111)
z-a
in both cases.
b. Izl > lal and Iz| < lal respectively.
c. lal <1and lal > 1 respectively.
Problem 2-18. Since
1
=l+az'+a%%---
g (2.112)
we get the signal of problem 2-17a, where the region of convergence is laz~!l <1 or Iz| > lal. Also, since
Z
a z z z
= = = +=+(=)24 ...
Lz gl e ) (2.113)
a
we get the signal of problem 2-17b where the region of convergence is Iza~!l <1 or Izl <a.
Problem 2-19. First we perform a partial fraction expansion,
A B
X@)=——
(z) z—a+z—b (2.114)
where
a? b?
A= , B= : 5
Py b—a (2.115)
a. The region of convergence is |z| > |5, and applying problem 2-17a to both terms in the partial fraction expansion,
x =A-a*+B-b* (2.116)
for k£ > 0, and zero otherwise.
b. The region of convergence must be lal < |z| < |51 and hence, applying the results of problem 2-17b,
A-a* k20 2117
%=1 -Bbh k<0 @117

c. For (a) the signal is not stable because b* — oo, This is because the region of convergence does not include the unit circle.
For (b) the region of convergence does include the unit circle so the signal is stable (this is the only region of convergence for



8 DIGITAL COMMUNICATION

which the signal is stable).
Problem 2-20. H"(j o).
Problem 2-21. a. The norm of both signals is unity. The inner product is

3

<8,8;>= [s1()sa(t)dt = 14— (2.118)

I
|

3

118, +8S;l12= J(sl(t) +54(t))2dt =4-Z +0—=3. (2.119)

I

c. There are many possibilities, but here is one:

I
U

d. Define an orthonormal basis for the subspace spanned by S; and S, as:

2 5 gt) > 0ut)
0 0.75 0 075 1

A signal orthogonal to S ; that is a linear combination of ®; and ®, is 2-®, — 723=~d>2.

=

e. The projection of S5 on the two basis vectors is
A
<SsPy>= - T3 <S> = — % (2.120)

V3 1
-5

Problem 2-22. a. Clearly if two signals are bandlimited, then their weighted sum is also bandlimited.
b. Let X be in the subspace. By Parseval’s theorem (problem 2-4), for any YeB,

and hence the projection on the subspace is —

o w
_J;x(t)y *(t)dt =%_LX(,‘0))Y'(]’0))¢1(0=0. (2.121)

Clearly, this is satisfied if and only if X (j @)=0for |@l < W.

c. Let this projection be P, then <S; — P,Y>=0 for all YeB. From b. this implies that §,(j®)=P (jo) for lol <W, and of
course since PeB, we must have that P (j ®) =0 for @l > W. Hence,
1

: : 1-¢/®
S, m)=£e —jagy = 222 (2.122)
Jjo
and
1 t1—e-io
—e )
t)y= — [ ——e/*do. 2.123
p() 7w e e’*do ( )

Unfortunately this integral cannot be evaluated in closed form.

Problem 2-23. Let X;eM; and X,eM,. An element of M ;@©M , can be written in the form X; + X,. Hence it suffices to show
that

<X-(Py.(X) + Py, (X)).X; + X>=0 (2.124)
Expanding the left side, it equals
<X—Py,(X),X;> — <Pp.(X).X;> + <X — Py (X),X5> — <Py (X), X > (2.125)
But by the definition of projection
<X - Py, (X),X;> =<X - Py (X).Xo>=0 (2.126)

and because M ; and M , are orthogonal subspaces
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<Pu,(X).X;> = <Py (X),X>=0 (2.127)
and hence the result is established.
Problem 2-24. Defining
z*H<—>h(t -kT) , (2.128)
the Schwarz inequality states that
Ipa(k)! < WHI-liz*-HII (2.129)

and since it is easy to verify that the signal and its time-translate have identical norms, this becomes the desired resul.
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Exercise 3-1. This follows from

Ele"** V] =Ele™E["]= [ [e=fx(x)e”fr()dx dy

- o (3.186)
= [emfxtr)ax Je7fro)dy = )0 -
Exercise 3-2. Evaluating the derivatives,
o) | o=1, (3.187)
%«bx(s) |,o=Exex1 |, 0=EX7, (3.188)
%d’x(s) ' =0=E[X?%*] |,4,=E[x2] . (3.189)
Exercise 3-3.
a. The distribution function can be written in terms of a unit step function u (x ) as
1- Fy(x)= }u(y—x)de(y)=]:dF(y) (3.190)
and since u (y—x) is bounded by e9=** for s >0,
1-Fy(x)< }e""" dFy(y) = e =*®y(s). (3.191)

b. Obtained by a similar technique.
c. Take the derivative of the bound w.r.t. s and set to zero.
Exercise 3-4. Suppose that y is a discrete value that Y takes on with probability a. Then
fr@)=ado-y). (3.192)

Integrate (3.30) over small intervals about y, or over (y — €,y + €) for small enough €. Equation (3.32) follows similarly, or it
can be easily derived from the definition of conditional probabilities (3.27).

Exercise 3-5. By direct calculation we have

*ady =0 (K 3.193
0‘51—[(:_“)’66 (6] o p ), ( )

PrX >x] = (ﬂlﬁje ~(a-windy o =

where we have used the change of variables w = (o — p)/c.
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Exercise 3-6.
a. The moment generating function can be obtained by evaluating the integral

sxp - -WR (3.194)

Completing the square in the exponent in the integral, it becomes — ((x — a)?— b ¥/202 where b = 26%s + 6*s2. The ¢ term
can be taken outside the integral, and the remaining integrand is just a Gaussian density function and therefore integrates to unity.
Thus, the moment generating function is ®x(s) = e® 29 and substituting for b we get the claimed result.

b. The optimal value of s can be solved as

x —
s= —;E (3.195)
and hence the bound is valid as long as x > 1. Substituting this value of s into the bound, we get
= -p’
1-Fx(x)<e (3.196)

which looks remarkably like the Gaussian density. Note than when x = , the actual probability is % and the Chernoff bound is
e =2.28, so the bound is rather loose. It becomes much tighter for larger values of x. The relation (3.43) follows by letting
p=0ando=1.

Exercise 3-7. Consider a scaled Gaussian, ¥ =aX. If the variance of X is o2, then the variance of ¥ is @202 Hence the
moment generating function of Y is

Dy(s)=e'o"™, (3.197)
The moment generating function is
Dy(s)=eler+ - +as'n, (3.198)
This is the moment generating function of a zero mean Gaussian random variable with variance (3.46).
Exercise 3-8. We only need to show

E[XY]=EXJE[Y]=>fx,y(x,y) = fx(x)fr (). (3.199)
From (3.48) and the fact that the random variables have zero-mean, p=0. Now (3.47) is easily factored into two parts.
Exercise 3-9. First show that

Rw(t)=E[W( + )W "(t)] = h"(— 1) % Ryx (%) (3.200)
by substituting for one of the W (¢) in terms of X (¢). Then show that
Ryx(®) = h (T) % Rx(7) , (3.201)

completing the result. Finally, show that the Fourier transform of 4 °( - 1) is H *(j ).
Exercise 3-10. Calculating first the cross-correlation of input and output,

Rew(m) = EXymWi1=E[Xm 3 Xohial=Ro(m)%h", . (3.202)

n=oc0

Then calculating the output correlation function,
Ry(m)=E[WymWi1=E[ ¥ Xohyom-a Wil = Ryw(m) ¥ b . (3.203)
Finally, show that the Fourier transform of k", is H *(e/°T).
Exercise 3-11. First we can calculate that
Rwy(t) =Rxy(T)% h(T) (3.204)
and then
Ryy(t) =Ryy (V)% g "(— 1) = Ry ()% h (D)% g *(~ 1) . (3.205)
Taking the Fourier transform we get the desired result.
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Exercise 3-12. This relation can be obtained by exactly the same method as Appendix 3-A, although it is tedious.

Exercise 3-13. We use the fact that the next state ¥, ,, of a Markov chain is independent of the past states ¥;_;,%¥; 5, - - * given
the present state W, to show that all future samples of the Markov chain are independent of the past given knowledge of the
present.

We wish to show that for any » > 0 and any k,
P Wean VW1, * ) =P (Wian [ W) (3.206)

This is easily shown by induction. Observe that it is true for n=1, by the definition of Markov chains (3.78). We can assume that
it is true for some n and show it is true for n+1. A fact about conditional probabilities similar to that in (3.33) tells us that

P Weins | WeWi1, ")

= Y P (Wesnst | Wrats Wi W1~ * * P (Wit | WisWi1s * - 7 ). el
Vo Qv
Since we assume that (3.206) is true for n,
P (Witns1 | Wiats Wi Wi-1s * * * ) =P (Wisn a1 | V1) (3.208)
It is also therefore true that
P Wi Viss Wi Wi-1s * * ) =P (Wi 41 | Wiee1,Wi)- (3.209)
Furthermore, from the definition of Markov chains,
PWeal VWit - ) =P (Wea I W) (3.210)
Substituting (3.209) and (3.210) into (3.207) we get
PWeonst WsWi-1, )= X P (Wiens1 | Wiats Wi )P (Wit | W) (3.211)
Wou EQr
Using the same fact about conditional probabilities (3.33) we can eliminate the summation to get
P Weins1 ' WeaWi-1, * * * ) =P (Wams1 | W), (3.212)
which shows that (3.79) is valid for n+1.
Exercise 3-14. Multiplying both sides of (3.83) by z* and summing from k=0 to k=,
YraG*= Y pGlXmiyz™.
k=0 ieQr =0
Changing variables and letting m=k+1,
Yem()z ™= 3 p(ili)Pi(z)
m=1 ieQr
or
z(Pj(z)-poi))= X p(li)Pi(z)
ieQe
Exercise 3-15. We have
fn= X kq(N)
k=—c0
- (3.213)
= 3 kgt | a.
k =—co
But the latter summation can be evaluated using a derivative,
3 - "
5@ = T g0 = -2 3 k()™ (3:214)
k =—co k =—co

The result follows immediately.
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Exercise 3-16.

a. Given the power series

=k
a
e‘=Yy —
E
and differentiating it once
poo Lo kat
a;n k!

and differentiating it twice

The moments follow immediately.

b. The moment generating function is

and taking the logarithm we get (3.108).
Exercise 3-17. For these initial conditions, we get
@(to)=1
and the Laplace transform becomes
sQj(s)+M2j(s)=M2j4(s), j#k
SOi(s) — q(to)e ™" + AQu(s) = AQ4(5).
By iteration, we can establish that Q;(s) =0 for j < & and for Jj2k

Qj(s) LA =
i(§)=——"—5—e™
J (s + A'),-h.l
The result follows immediately by taking the inverse Laplace transform.

Exercise 3-18. The state transition diagram is shown in the following figure:

H (n-1)p nu
The equations become for this case

dq.(t)
dt

q,( )

—  tnHg,(t)=0

—g TIMi0)=( + Dugia(), 0<j<n

with initial condition

0,0<j<n
q](o) = 1, ] =n .
Taking the Laplace transform, we get
SQ,,(S) - qn(o) + "“’Qu(s) =0
5Qj(s)+juQj(s)=( + DuQju(s), 0<j <n
It follows that
qr(t)=e"
2;()=( + Dpe7¥xq;,(t)
and the reader can verify by induction that (3.110) is valid.
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(3.215)

(3.216)

(3.217)

(3.218)

(3.219)

(3.220)

(3.221)

(3.222)

(3.223)

(3.229)

(3.225)



