# DRUG TOXICOKINETICS

PETER G. WELLING FELIX A. DE LA IGLESIA

#### Library of Congress Cataloging-in-Publication Data

Drug toxicokinetics /edited by Peter G. Welling, Felix A. de la Iglesia.

p. cm. -- (Drug and chemical toxicology; v. 9) Includes bibliographical references and index. ISBN 0-8247-9019-7 (alk. paper)

1. Drugs--Toxicology. 2. Pharmacokinetics. I. Welling, Peter G.

II. de la Iglesia, Felix A. III. Series: Drug and chemical toxicology (New York, N.Y.: 1984); v. 9.

[DNLM: 1. Pharmacokinetics. 2. Drugs--toxicity. W1 DR513F v.9

1993 / QV 38 D7948 1993]

RA1238.D8 1993

615'.704--dc20

DNLM/DLC

for Library of Congress

93-16817

CIP

The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the address below.

This book is printed on acid-free paper.

#### Copyright © 1993 by MARCEL DEKKER, INC. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York 10016

Current printing (last digit): 10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

# DRUG TOXICOKINETICS

#### DRUG AND CHEMICAL TOXICOLOGY

#### SERIES EDITORS

Frederick J. Di Carlo

Senior Science Advisor Environmental Protection Agency Washington, D.C. Frederick W. Oehme

Professor of Toxicology, Medicine, and Physiology Director, Comparative Toxicology Laboratories Kansas State University Manhattan, Kansas

- 1. Toxicity Screening Procedures Using Bacterial Systems, \*#dited by Dickson Liu and Bernard J. Dutka
- 2. Chemically Induced Birth Defects, James L. Schardein
- 3. Neurotoxicology, edited by Kenneth Blum and Luigi Manzo
- 4. Statistics for Toxicologists, David S. Salsburg
- 5. Photobiology of the Skin and Eye, edited by Edward M. Jackson
- 6. Product Safety Evaluation Handbook, edited by Shayne Cox Gad
- 7. Safer Insecticides: Development and Use, edited by Ernest Hodgson and Ronald J. Kuhr
- 8. Animal Models in Toxicology, edited by Shayne Cox Gad and Christopher P. Chengelis
- 9. Drug Toxicokinetics, edited by Peter G. Welling and Felix A. de la Iglesia

ADDITIONAL VOLUMES IN PREPARATION

# ABOUT THE SERIES

Toxicology has come a long way since the ancient use of botanical fluids to eliminate personal and political enemies. While such means are still employed (often with more potent and subtle materials), toxicology has left the boiling-pots-and-vapors atmosphere of the "old days" and evolved into a discipline that is at the forefront of science. In this process, present-day toxicologists have adopted a variety of techniques from other scientific areas and developed new skills unique to the questions asked and the studies being pursued. More often than not, the questions asked have never been thought about before, and only through the advances made in other disciplines (for example, in analytical chemistry) were the needs for answers raised. The compounding concerns of society for public safety, the maintenance of environmental health, and the improvement of the welfare of research animals have expanded the boundaries in which toxicologists work. At the same time, society has spotlighted toxicology as the science that will offer the hope of safety guarantees, or at least minimal and acceptable risks, in our everyday chemical encounters.

This Drug and Chemical Toxicology series was established to provide a means by which leading scientists may document and communicate important information in the rapidly growing arena of toxicology. Providing relevant and forward-looking subjects with diverse and flexible themes in an expedited and prompt publication format will be our goal. We will strive in this vehicle to provide fellow toxicologists and other knowledgeable and interested parties with appropriate new information that can be promptly applied to help answer current questions.

iv About the Series

Drug Toxicokinetics is a state-of-the-art work. It explains basic principles and their present and future application in drug design, discovery, and development. It looks to a future with safer and more effective pharmaceuticals.

Frederick J. Di Carlo Frederick W. Oehme

# **FOREWORD**

We have come a long way since 1922, when C. P. Sherwin proposed the chemical defense hypothesis stating that living organisms generally convert foreign substances to more water-soluble, and thus more readily excretable, metabolites [1]. Sherwin, who studied under Thierfelder in Tubingen, was the "German Connection" for the small drug metabolism community in America [2]. For reviews published in 1933 and 1935 [3,4], he used the durable title "Detoxication Mechanisms," a term that he probably derived from Neumeister's *entgiftung* [5]. R. T. Williams adopted *Detoxication Mechanisms* for the title of his classic volumes in 1947 and 1959 [6] and furthered acceptance of the chemical defense hypothesis.

But there was a serious problem: Not all metabolites are innocuous. In 1950 Boyland suggested that aryl oxide intermediates might be responsible for the carcinogenicity of their parent compounds [7], and in 1968 Jerina et al. demonstrated that naphthalene-1,2-epoxide is a reactive intermediate formed in the metabolism of naphthalene [8]. Metabolite identification increased explosively with the development of remarkable chromatographic and spectrometric instrumentation. New reactive metabolic intermediates were discovered and introduced into toxicology. Considerable research focus shifted from pharmacology to toxicology, and from pharmacokinetics to toxicokinetics, the latter being defined as the rates of absorption, tissue distribution and redistribution, enzymic and non-enzymic biotransformation, and excretion as related to toxicologic endpoints [9]. Gradually, the euphemism "side effect" was replaced by "toxicity."

Today toxicokinetics is maturing and moving to center stage in toxicology. Since "the dose makes the poison," we need to focus on the de-

vi Foreword

livery of that dose to critical biological sites so that we can understand the molecular events producing toxicities and learn how to intervene. To achieve these objectives, it is clear that toxicokinetics will require close collaboration between pharmacokineticists and toxicologists.

Frederick J. Di Carlo, Ph.D.
Senior Science Advisor
Environmental Protection Agency
Washington, D.C.

#### REFERENCES

- 1. Sherwin, CP. The fate of foreign organic compounds in the animal body, *Physiol Rev.*, 2: 238–276 (1922).
- 2. Di Carlo FJ, Adams JD, Sr, and Adams N. Carl Paxson Sherwin, American Pioneer in Drug Metabolism, *Drug Metab. Rev.*, 24: 493–530 (1992).
- 3. Ambrose AM, Sherwin CP. Detoxication mechanisms, *Ann. Rev. Biochem.*, 2: 377–396 (1933).
- 4. Harrow B, Sherwin CP. Detoxication mechanisms, *Ann. Rev. Biochem.*, 4: 263–278 (1935).
- 5. Neumeister JR. Lehrbuch der Physiologische Chemie, 2: 346, Jena, 1895.
- 6. Williams RT. Detoxication Mechanisms, 1st ed., Wiley, New York, 1947; 2nd ed., Wiley, New York, 1959.
- 7. Boyland E, Wolf G. Metabolism of polycyclic compounds. VI. Conversion of phenanthrene into dihydroxydihydrophenanthrenes. *Biochem. J.*, 47: 64–69 (1950).
- 8. Jerina DM, Daly JW, Witkop B, Zaltzman-Nirenberg P, Udenfriend S. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. III. Formation of 1,2-naphthalene oxide from naphthalene, *J. Am. Chem. Soc.*, 90: 6525–6527 (1968).
- Di Carlo FJ. Metabolism, pharmacokinetics, and toxicokinetics defined, Drug Metab. Rev., 17: 1–4 (1982).

### Preface

Toxicokinetics is emerging as a new and important discipline in drug discovery and development. It represents a combination of two disciplines, pharmacokinetics and toxicology, which are in themselves relatively new and rapidly evolving in terms of technology and scope.

It has become widely recognized that it is important to understand drug disposition when administration is at toxicological doses just as when it is at pharmacological or therapeutic doses. Similarly, the metabolic transformation of compounds in toxicity species has to be understood in order to provide adequate and informed comparisons of their effects in both toxicity and pharmacology studies in humans.

Toxicokinetics is uniquely different from pharmacokinetics in that it represents the study of drug absorption, distribution, metabolism, and excretion at doses that are far greater than those normally used in a pharmacologic screen or in therapy. Transport systems and metabolizing enzymes become saturated, protein binding may change, and the overall response of physiological systems may change due to the greater concentrations of compounds in the body at toxicologic doses. It is no longer sufficient simply to administer a drug at toxicological doses and note the events that occur. Just as interest in scientific and regulatory circles has shifted from consideration of dose–response relationships to drug concentration–response relationships, so in toxicology emphasis is shifting to concentration–effect considerations.

In order to address the many concepts in this rapidly changing area, we have invited experts from a wide spectrum of disciplines and backgrounds to contribute state-of-the-art concepts and technologies to this book. Each author is a recognized expert in his or her field and they thus collectively provide a wealth of experience in disciplines that are

viii Preface

either directly or closely related to toxicokinetics. This book will assist and guide those who are involved in this important discipline. We have attempted to cover a range of topics, from basic considerations of saturable and nonsaturable pharmacokinetics to practical considerations of specific therapeutic areas and a projection of the evolving nature of toxicokinetics in the future. The overall purpose of this book is to bring together various aspects of toxicokinetics with an emphasis on practical applications. Thus we designed this work as a "manual" or "textbook" rather than dwelling on basic concepts. This approach is essential in order to familiarize toxicologists and drug metabolism scientists with toxicokinetic principles and facilitate the application of these in drug development.

Development of this book took significant professional effort and resources by the contributors. In addition, numerous colleagues helped to bring it to its final form. We thank particularly Ms. Theresa Davis, who carried the administrative responsibilities and kept the whole thing together.

Peter G. Welling Felix A. de la Iglesia

# **CONTRIBUTORS**

**Vijay K. Batra, Ph.D.\*** Medical Research Division, American Cyanamid Company, Pearl River, New York

**Hugh E. Black, D.V.M., Ph.D.** Vice President, Department of Drug Safety and Metabolism, Schering-Plough Research Institute, Lafayette, New Jersey

Kay P. Castagnoli, B.A. Research Associate, Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

**Neal Castagnoli, Jr., Ph.D.** Peters Professor of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

Mitchell N. Cayen, Ph.D. Senior Director, Department of Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Kenilworth, New Jersey

L. F. Chasseaud, Ph.D. Head, Department of Drug Metabolism and Pharmacokinetics, Huntingdon Research Centre Ltd., Huntingdon, England

Felix A. de la Iglesia, M.D. Vice President, Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan

**Lloyd A. Dethloff, Ph.D.** Research Associate, Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan

<sup>\*</sup>Current affiliation: Associate Director, Department of Pharmacokinetics, Schering-Plough Research Institute, Kenilworth, New Jersey

xii Contributors

Silvio Garattini, M.D. Director, Mario Negri Institute for Pharmacological Research, Milan, Italy

Eva Halperin-Walega, Ph.D. Group Leader, Department of Pharmacokinetics, Medical Research Division, American Cyanamid Company, Pearl River, New York

Michael J. Iatropoulos, M.D., Ph.D. Head, Department of Regulatory Pathology, American Health Foundation; Professor, Department of Pathology, New York Medical College, Valhalla; and President, Labpath Management, Inc., Suffern, New York

Bert N. La Du, Jr., M.D., Ph.D. Emeritus Professor, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan

John R. MacDonald, Ph.D. Senior Research Associate, Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan

**David G. Pegg, Ph.D.** Director, General Toxicology, Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan

**Norberto Perico, Ph.D.** Mario Negri Institute for Pharmacological Research, Bergamo, Italy

**Steven E. Rose, Ph.D.** Senior Scientist, Department of Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan

**Robert D. Smyth, Ph.D.** Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Syracuse, New York

Robert J. Smyth, M.Sc.\* Department of Pharmacology, Philadelphia College of Pharmacy and Science, Philadelphia, Pennsylvania

**Anthony J. Streeter, Ph.D.** Senior Scientist, Department of Drug Metabolism, The R. W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania

Robert L. Susick, Ph.D.<sup>†</sup> Research Associate, Department of Pathol-

<sup>\*</sup>Current affiliation: Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania

<sup>&</sup>lt;sup>†</sup>Current affiliation: Associate Director of Toxicology, Sphinx Pharmaceuticals, Durham, North Carolina

Contributors xiii

ogy and Experimental Therapeutics, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan

- **Peter G. Welling, Ph.D., D.Sc.** Vice President, Department of Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan
- **Lloyd R. Whitfield, Ph.D.** Senior Research Associate, Department of Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan
- **Thomas Woolf, Ph.D.** Senior Research Associate, Department of Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan
- **D. Scott Wright, Ph.D.** Section Director, Department of Pharmacokinetics and Drug Metabolism, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan

**Avraham Yacobi, Ph.D.** Director, Department of Pharmacodynamics Research, Medical Research Division, American Cyanamid Company, Pearl River, New York

# Nomenclature

A Amount of drug in the body

ACAT Acyl-coenzyme A cholesterol transferase

ACE Angiotensin converting enzyme

ADHD Attention deficit hyperactivity disorder

ADME Absorption, distribution, metabolism, and excretion

ALT Alanine aminotransferase

A<sub>ss</sub> Amount of drug in the body at steady state

AST Aspartate aminotransferase
ATP Adenosine triphosphate

Au Quantity of unchanged drug cleared in urine

AUC Area under drug concentration versus time curve in

blood, plasma, etc.

BID Drug dosing twice each day BLQ Below limit of quantitation

BSA Body surface area
BUN Blood urea nitrogen

C Concentration of drug in blood, plasma, etc.

Concentration of drug in blood, plasma, etc., immedi-

ately following a rapid intravenous dose

CBER Center for Biologics Evaluation and Research (US FDA)
CDER Center for Drug Evaluation and Research (US FDA)

cDNA Cyclic DNA

C-HUS/TTP Hemolytic uremic syndrome complicated with thrombo-

cytopenia

Cl<sub>m</sub> Metabolic clearance
Cl<sub>p</sub> Plasma clearance
Cl<sub>c</sub> Renal clearance

xvi Nomenclature

C<sub>max</sub> Maximum drug concentration in blood, plasma, etc. C<sub>min</sub> Minimum drug concentration in blood, plasma, etc.,

during repeated drug dosing

CNS Central nervous system

CSA Clinical studies application (European Community)

CSF Cerebrospinal fluid

C<sub>ss</sub> Concentration of drug in blood or plasma at steady

state

D Dose of a drug
d Membrane thickness
DNA Deoxyribonucleic acid

Ratio of drug dosing interval to elimination half-life

EC Extracellular

EGF Epidermal growth factor ESRF End-stage renal failure

F Fraction of administered drug that is systemically

available

FDA United States Food and Drug Administration

FGF Fibroblast growth factor

fu Fraction of unbound drug in plasma
GBM Glomerular basement membrane

GFR Glomerular filtration rate

GI Gastrointestinal

GLC Gas liquid chromatography
GLP Good laboratory practice

GSH Glutathione Hct Hematocrit

HDL High-density lipoprotein

HPLC High-performance liquid chromatography HMG CoA 3-Hydroxy-3-methylglutaryl coenzyme A

HTE Human time equivalent
HUS Hemolytic uremic syndrome

IC Intracellular

ICH-1 First International Conference on Harmonization

IgG Immunogammaglobulin

IM Intramuscular

IND Notice of claimed investigational exemption for a new

drug (USA)

IP Intraperitoneal IV Intravenous

k<sub>0</sub> Zero-order rate constant

 $K_{\rm f}$  Glomerular ultrafiltration coefficient

Nomenclature xvii

K<sub>m</sub> Michaelis constant drug concentration at which elimi-

nation rate is one-half the maximum when Michaelis

kinetics are operative

k<sub>p</sub> Red blood cell plasma partition coefficient

 $LD_{10}$  Drug dosage that is lethal to 10% of an animal species

LDL Low-density lipoprotein

MAA Marketing Authorization Application (European

Community)

MAO Monoamine oxidase

MEC Minimum effective drug concentration

mRNA Messenger ribonucleic acid MTD Maximum tolerated dose

NAT *N*-acetyltransferase NCE New chemical entity

NDA New Drug Application (US FDA)

NED No effect dose

NOAEL No observable adverse effect level

NOEL No observable effect level

NSAID Nonsteroidal anti-inflammatory drug

ΔP Glomerular transcapillary hydraulic pressure gradient

PAF Platelet activating factor
PAS Periodic acid-Schiff reaction
PCR Polymerase chain reaction
PDGF Platelet-derived growth factor

PFR Plasma flow rate

PLA Product license application for biologicals (US FDA,

CBER)

PO Oral route (per os)
Q Blood flow rate
QC Quality control

QD Drug dosing once each day

R Drug accumulation factor with repeated dosing

RBF Renal blood flow

RPN Renal papillary necrosis

RNA Ribonucleic acid

rRNA Ribosomal ribonucleic acid RSD Relative standard deviation

Safety margin Ratio of animal no observed toxic effect exposure level

to human clinical exposure level

SOP Standard operating procedure

t Dosing interval  $t_{1/2}$  Elimination half-life

xviii Nomenclature

t<sub>max</sub> Time of maximum drug concentration

t<sub>min</sub> Time of minimum drug concentration in blood or

plasma during repeated drug dosing

tRNA Transfer RNA TV Tissue volume

V Drug distribution volume in the body  $V_{max}$  Maximum rate of drug elimination

W Body weight