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FOREWORD

This volume contains_thé complete text of the technical papers accepted
for presentation at the Tenth Power Industry Computer Applications Conference
in Toronto, Ontario, Canada, May 24-27, 1977.

This volume will be the only published record of the completed papers.
Abstracts will appear in Power. Apparatus and Systems. Written discussions
and the author's closure for these papers will be published in a supplemental
volume which will be distributed after the conference.

Our thanks are due to the many persons who contributed their time and
talent to review these papers. The authors themselves are, of course, the
people who make a technical conference possible, and their efforts to share
their ideas, and the fruits of their work with us are deeply appreciated.

Hilton U. Brown, III Chairman
Technical Program Committee
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A SIMULATION STUDY OF DEAERATOR CONTROL
FOR CANDU NUCLEAR POWER PLANTS

Q.B. CHOU

S.N. CHEN, Member, IEEE

Ontario Hydro, Toronto, Ontario, Canada

ABSTRACT

deaerator for CANDU nuclear power
simulated for the

The
plants is modelled and
purpose of investigating its dynamic
behaviour under various operating
conditions and designing .suitable control
schemes for its pressure and level control.

The mathematical model consists of two
parts - equilibrium and non-equilibrium
thermodynamic models, with a provision to
switch from one model to the other
depending on the relative thermodynamic

~conditions of the liquid and vapour phases.
The fidelity of the model is satisfactorily
verified by comparing simulation results of

the Pickering Generating Station deaerator
with available field data.

Digital control algorithms are
developed to meet the deaerator control
requirements, particularly under the
'Reactor Poison Prevent' operation. The

effects of varying control parameters and
sampling time are also discyssed.

INTRODUCTION

AIn a CANDU nuclear
deagyrator serves the dual functions of
heating boiler feedwater to a minimum
permissible temperature of around 240 F and
liberating corrosive, dissolved gases in
the feedwater. As illustrated in Figure 1,
it is made up of a heater vessel located on
and draining into a large water storage
tank. Heating steam is extracted from the
L.P. turbine during normal operation or
from the main steam 1line in abnormal
situations and injected into the deaerator
at the two ends of the heater vessel.
Condensate from the L.P. heaters and the
H.P. heaters drain are sprayed down from
the top of the heater vessel and the
mixture is heated by the incoming steam as
it cascades down a stack of perforated
trays. Liberated gases are vented to
atmosphere and water flowing from the
heater vessel 1is admitted to the storage
tank through drain downcomers -and a
distribution header which inhibits thermal
stratification. The deaerator storage tank

power plant the

1977 Powen Indusiny Computern
AppLications Conference
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receives boiler feed pump recirculation
flow if the feedwater flow drops below the
minimum allowable flow for one pump.

1,2

There are two possible approaches to

MATHEMATICAL MODELS

model a deaerator: equilibrium
thermodynamic model or non-equilibrium
thermodynamic model. In the equilibrium
model, it is assumed that the liquid and
vapour phases in the deaerator are in
saturation, so the equations of

conservation of mass and energy are applied
to the 1liquid and vapour as a whole. The
non-equilibrium model takes into
consideration the mechanism between the
vapour phase and the 1liquid phage; the
average properties of the two phases are
not necessarily. in thermodynamic
equilibrium and the: conservation equations
of mass and energy are applied to each
phase separately.

During the start-up or poison prevent*
modes of operation, a large amount of
heating steam required by the deaerator is
extracted directly from the main steam
line. Because this steam is at,a much
higher temperature and pressure than the
conditions in the deaerator, it will
superheat the vapour phase in the vessel.
For this reason a non-equilibrium model is
deemed necessary for the simulation study
for deaerator control. The dynamics
between the vapour phase and the 1liquid
phase depends on the net condensation (or
evaporation) rate which is a function of

many factors, including the relative
thermodynamic conditions between the
phases, the condensate flow rate and the

geometry of the vessel.

If the temperature of the liquid in
the deaerator is higher than the saturation
temperature corresponding to the vapour
pressure, there will be net evaporation
(flashing), otherwise there will be net
condensation. Flashing is known to be a
very fast process and it tends to maintain

reactor shutdown or load
reduction, Xenon builds up and eventually
causes the reactor to '"poison out".
Consequently, the . reactor becomes
unavailable for approximately forty hours.
To prevent this after a turbine trip or
large turbine load reduction, the reactor
may be operated at some minimum power level
indefinitely without being poisoned out.
For Pickering Generating Station A this
level is around 70% full power. The
generated steam is discharged to the
atmosphere or to the main condenser.:

* Following a



equilibrium- between the two phases.
Instead of estimating the rate of flashing
with heat transfer coefficients, the method
here is to switch the computation to use
the equilibrium model when such conditions
prevail. This is deemed to be  more
accurate as well as computationally stable.

Non-Equilibrium Thermodynamic
Model of Deaerator

The dynamic behaviour of the deaerator
is obtained from the equations of
conservation of mass and energy (written
separately for the liquid and vapour
phases), the equations of state, the
boundary conditions due to geometrical
constraints and assumptions regarding heat
exchange at the trays and regarding the
rate of condensation.

With the symbols defined in Figure 2,
the equations for conservation of mass are:

My = Wggom * Wesrr ~ West T WREV (1)

(2)

M, = Wegr * Weon * Wmpp T WrDw

where the gas vent flow and feedwater
recirculation flow have been neglected.

It is assumed that the condensate, the
H.P. heaters drain and the condensed steam

mix thoroughly in the trays of the heater
vessel and drain into the storage tank at
one mixture enthalpy hp. This assumption

is based on the design intent of the trays
for thorough mixing and homogeneous heating
and may be mathematically expressed as:

Waamh h

CsT'V HPD

+ Woonlcon * Wuep

(W + W + WHPD) hF

CST CON 3)

The for conservation of

energy are:

equations

h

= WggrmPes * YEsTT"ESTT

(M0, + Myuy)
PV

y \4
- Vepviy T T i

- Wegphy

+ W + W, ) h

(MLﬁL + ﬁLuL)

(Wegp * Weon * Wupp! "
pOL
~ WepwL t Q% T T (5)
AN\

Relating enthalpy to internal energy

and total volume to specific volume gives:
Pv.
v
- hy =uy + 5 _(6)

13

h o, + —= (7)

Vy = Myvy (8)
vy = Mpvp (9)
The geometrical constraint is a

constant deaerator volume:
(10)

Because the vapour in the deaerator is
likely to be superheated, the pressure is
expressed as a function of two other vapour
properties:

P = P(hv, vv) (11)

where the functional relationship is
obtained from.the superheated steam tables.

On the other hand, water may be considered
incompressible and therefore its specific
volume may be expressed as:

v (h.) (12)

L T Visar'L

where the - functional relationship is
obtained from‘'the saturation steam tables.

Equations (1) +to' (12) contain the
basic thirteen unknowns: My, Mg, uy, ur.
hv, hL' hF, WCST, VV, VL' Ve VL, P. AEl
other variables may be either directly
computed from these unknowns or are
determined by factors external to the
deaerator, in which case they are

considered as inputs to the simulation. It
remains to estimate Wggp, the rate of
condensation of steam gue to the heat
exchange at the trays.

At any given pressure, the maximum
rate of condensation of steam is that which
will raise the enthalpy of the liquid
mixture (Weg +WCON+WHPD) to the saturation
liquid entgalpy corresponding to that
pressure (hpgar (P)) . This maximum
condensation rate may be obtained from
equation (3) as:

+ W h

hy + Wooyh HPDPHPD

%*
L con"con

CST'V

+ W (13)

con * W

= (Wg upp) Prsar (P)

CsT

Wegp* is considered as a driving force
and thé actual rate of condensation is
assumed to be a first order lag to it:



1

W = == (WEem = Waer) (14)
CST TCST CST CST

Two implications of the last equation
may be noted. Firstly,the time constant
Tes is a measure of how fast the
condensation rate approaches the maximum
condensation rate during a transient.
Secondly, the steady state rate of
condensation is the maximum rate

corresponding to the steady state pressure.
The enthalpy of the liquid mixture draining
into the storage tank will then be hpgar (P)
and the vapour and liquid phases in the
deaerator will be in saturation. This is
consistent with the heat balance data of
Pickering .and Bruce Generating Stations
which indicate that during steady state
normal operation, the vapour and 1liquid
phases in the deaerator are in saturation
and the enthalpy of the 1liquid draining
from the heater vessel to the storage tank
is saturated with respect to the pressure.
Tcst is therefore also a measure of how
fast the two phases return to equilibrium
after a disturbance. The value chosen for
TogT Will be based on field data.

The immersion heaters are controlled
solely by the temperature of the water in
the storage tank:

Q = f(TL) (15)

of the water is
and

The temperature
considered independent of the pressure
may be determined from its enthalpy:

T (16)

L = Trsap(hy)
where the functional relationship is
obtained from the saturation steam tables.

Flow through the relief valve depends
on the deaerator pressure and is. expressed
as: ;-

0 if P< P0
_ P-P
"Rev T 1 ¥rev o —0 it Po<P<P oo (17)
100 "0
\KRFV if P >P100‘
where, P0 = pressure at which relief
valve start to open
P = pressure at which relief
100 .
valve is fully open
Kppv = capacity flow of relief
valve
In each iteration the water level is

incremented by the increment in water
volume divided by the water surface area:

AV.
& (18)

At AREA
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The water surface area is a function
of the water 1level and the deaerator
geometry and is updated in every iteration.
With reference to Figure 3, it is given by:

‘} 2
2Ll 2R1£—£

if 0<2<2R)

AREA =€C if 2Rli£i (2R1+H) (19)

' A A2
2L2V‘2R29,-2

if (2R1+H)<42£;(2R1+H+2R2)

cross sectional area of
pressure equalizer plus water
downcomers

where, C =

~

L2 =2 - 2R1 - H

The feedwater flow, H.P. heaters drain
flow and L.P. turbine extraction steam flow
are all dependent on conditions external to
the deaerator and are therefore inputs to
the simulation. For the poison prevent
operation of a typical CANDU nuclear power
plant, the boiler feedwater demand drops to
70% of the full power demand while the H.P.
heaters drain and L.P. turbine extraction
are cut off by non-return valves.

The condensate flow and steam flow
from the main steam line are determined by
the 1level and pressure control schemes
respectively.

Equilibrium Thermodynamic

‘Model of Deaerator

When the deaerator pressure drops
below the saturation pressure corresponding
to’ the water temperature, flashing ensues
and equilibrium is maintained between the
two phases. When such conditions occur,
the computation is switched to the
equilibrium model.

A significant simplification in the
equilibrium model is possible by taking
advantage of the fact that the mass of
liquid is much greater than the mass of

vapour in the deaerator. In order to
maintain equilibrium between the two
phases, practically all the incoming steam

has to condense.

The equations of conservation of mass
and energy are written for the vapour-
liquid combination as a whole:

Mp + My =M = Wpgoy + Wopgmm

+ W

CON+W - W

HPD



(M) + (Mpug) = (up)

= WpsrmPEsTM

+

W h

estrlESTT * WeoND

CON 'CON

+ W

¥ "yppMupD (21

= WepwL

= Wrepvily * Qy

(20) and (21) may be solved
from which all other
e determined for saturation

Equations
for M and u
variables may
conditions.

immersion heaters,
level, feedwater

Heat from the
relief valve flow, water
flow, H.P. heaters drain flow and L.P.
turbine extraction steam flow are
determined in a similar fashion as in the
non-equilibrium model.

Pressure Control

During the start-up or poison prevent
modes of operation of a CANDU nuclear power

plant, deaerator pressure is controlled by
regulating the amount of heating steam
extracted from the main steam line.
Difficulty in pressure control has been

experienced at the Pickering Generating
Station with the wuse of an analog PI
controller. Simulation results also
indicate poor pressure control with the use
of a PI algorithm but significant
improvement is achieved with the use of a
properly tuned, PID algorithm (analog or
digital), and/or with the use of a faster
stroking pressure control valve.

The analog PID algorithm for pressure
control may be expressed as:

TnpS
_ 1 DP
Y, = Kep 1+ == * ¢ Ep (22)
IP DP
—— S5+1
G
where, EP = PSET - P
Popp = pressure set point
Yp = normalized control signal
to pressure control valve
Kop = normalized gainv
Tp = reset time
p = rate time
G = derivative filter factor

Laplace variable
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The equivalent digital PID alogrithm
may be expressid either in the position or
velocity form. '3

Position Algorithm:

Y, (N) = Kop [EP(N) + DP(N)] + Ip(N) (23a)
-TSPG
T T
D, (N) = DPPl1 - e bF E_(N) - E,(N-1)
P T P P
SP
“Tgp
Tpp
+ € Dp (N-1) (23b)
K. .. T !
I (N) = I, (N-1) + —=5F §_(n) (23c)
P P P
IP
th . ;
where, N = N sampling instant
Tgp = sampling time for
pressure control
Velocity Algorithm:
Yo (N) = Y, (N-1) + AYp(N) (24a)
AY, (N) = K.p [EP(N) - EP(N—I)]
K.,T
CP~SP
+ KCP ADP(N) + -TIP— EP(N) (24Db)
“Tsp®
DP “pp
ADP(N) = o 1l -¢ b 4
SP
[EP(N) - 2Ep(N-1) + EP(N-Z)]
~TgpC
Tpp.
+ € ADP(N—l) (24c)
With the position algorithm, the
computer calculates the desired position of
"~ the manipulated variable after every
sampling instant -- in this case, the
opening of the control wvalve. With. the
velocity algorithm, the desired change in

position is calculated.



Second order valve characteristics are

assumed in computing the response of the
pressure control valve to the control
signal:
Y.
P
Sp = 2T, T2 (25)
1+ — s + —> s
NP Wyp
where, Sp = lift of pressure control
valve
L = damping factor of
pressure control valve
Ugp = natural frequency of
pressure control valve
The steam flow rate through the valve

is expressed as:

WegstM = PEsTMKPSP v Ppstm~P

= density of steam at the
control valve

(26)

where, PESTM

Kp = pressure control valve
constant
Ppsrm = pressure upstream of

pressure control valve
Level Control

Deaerator level control is achieved by
modulating the condensate flow into the
deaerator. Due to the large size of the
deaerator storage tank, level fluctuations
are slow. This is ideal for digital
control because the requirements on the
rate of sampling is fairly relaxed.

A three-element PI algorithm for level
control may be expressed as:

J=

1
+ K 1+ E
CL2 [ T1128 ] F

Y. = K 1+
L CL1 [ f T11,1S

(27)

where, EL = ZSET -2
Ep = Yepw ~ Wcon
LSET = level set point .
Y, = normalized control signal
to level control valve
and other symbols are defined as in

equation (22).
The equivalent digital algorithms are:

Position Algorithm:

(N) + KCL2EF(N) + IL(N) (28a)

¥~ Kera®
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K. AT
1) = 1 (8-1) + <L SL g (x)
FI5l
K T
5 _
+ <22 5L g () (28b)
IL2

where Tgp is the sampling time for level

control.

Velocity Algorithm:

YL(N) = YL(N-l) + AYL(N) (29a)
AYL(N) = KCLl [EL(N) - EL(N-l)]
+ Kopo [EF(N) - EF(N—l)]
T
SL
+ K —— E. (N)
CL1l 1Ll L
T
SL
+ K E_ (N) (29b)
CL2 TrL2 F
The response of the level control
valve and the condensate £flow rate are
determined by equations similar to
equations (25) and (26).
At Bruce and future Generating
Stations, deaerator level control valves

are protected from cavitation by being
located upstream of the L.P. heaters.
Taking into account the dynamics along the
piping from the level control valves to the
deaerator:

2
Weon _ 1 o [ Mcon
at - PIPE; | TP "\ Poonkrsy
- P - Py, - PIPEWooy (30)

density of condensate at
the control valve
level control valve

where, pCON =

K

L
constant
‘SL = 1lift of level zontrol
. valve



