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Foreword vii

Reliability and safety are fundamental attributes of any modern
technological system. In practice, diverse types of protection barriers are
placed as safeguards from the hazard posed by the system operation,
within a multiple-barrier concept. These barriers are intended to protect
the system from failures of any of its components, hardware, software,
human and organizational.

Correspondingly, the reliability and risk analyses of a given system aim
at the quantification of the probability of failure of the system itself and
of its protective barriers.

A fundamental issue in these analyses is the uncertainty in the failure
occurrences and consequences. For the objectives of system safety, this
entails protecting the system beyond the uncertainties of its accidental
scenarios.

One classical way to defend a system beyond the uncertainty of its failure
scenarios has been to:

i) identify the group of failure event sequences leading to credible
worst-case accident scenarios { s * } (design-basis accidents),

ii) predict their consequences { x* } and

iii) accordingly design proper safety barriers for preventing such
scenarios and for protecting from, and mitigating, their associated
consequences.

Within this structuralist, defense-in-depth approach, safety margins
against these scenarios are enforced through conservative regulations of
system design and operation, under the creed that the identified worst-
case, credible accidents would envelope all credible accidents for what
regards the challenges and stresses posed onto the system and its
protections. The underlying principle has been that if a system is
designed to withstand all the worst-case credible accidents, then it is ‘by
definition’ protected against any credible accident [1].

This approach has been the one classically undertaken, and in many
technological instances it still is, to protect a system from the uncertainty
of the unknown failure behaviours of its components, systems and
structures, without directly quantifying it, so as to provide reasonable
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assurance that the system can be operated without undue risk. However,
the practice of referring to “worst” cases implies subjectivity and
arbitrariness in the definition of the accidental events, which may lead to
the consideration of scenarios characterized by really catastrophic
consequences, although highly unlikely. This may lead to the imposition
of unnecessarily stringent regulatory burdens and thus excessive
conservatism in the design and operation of the system and its protective
barriers, with a penalization of the industry. This is particularly so for
those industries, such as the nuclear, aerospace and process ones, in
which accidents may lead to potentially large consequences.

For this reason, a more rational and quantitative approach has been
pushed forward for the design, regulation and management of the safety
of hazardous systems. This approach, initially motivated by the growing
use of nuclear energy and by the growing investments in aerospace
missions in the 1960s, stands on the principle of looking quantitatively
also at the reliability of the accident-preventing and consequence-limiting
protection systems which intervene in all potential accident scenarios, in
principle with no longer any differentiation between credible and
incredible, large and small accidents [2]. Initially, a number of studies
were performed for investigating the merits of a quantitative approach
based on probability for the treatment of the uncertainty associated with
the occurrence and evolution of accident scenarios [3]. The findings of
these studies motivated the first complete and full-scale probabilistic risk
assessment of a nuclear power installation [4]. This extensive work
showed that indeed the dominant contributors to risk need not be
necessarily the design-basis accidents, a ‘revolutionary’ discovery
undermining the fundamental creed underpinning the structuralist,
defense-in-depth approach to safety [1].

Following these lines of thought, the probabilistic approach to risk
analysis (PRA) has arisen as an effective way for analysing system
safety, not limited only to the consideration of worst-case accident
scenarios but extended to looking at all feasible scenarios and its related
consequences, with the probability of occurrence of such scenarios
becoming an additional key aspect to be quantified in order to rationally
and quantitatively handle uncertainty [4-11]. From the view point of
safety regulations, this has led to the introduction of new criteria which
account for both the consequences of the scenarios and their probabilities
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of occurrence under a now rationalist, defense-in-depth approach. Within
this approach to safety analysis and regulation, reliability engineering
takes on a most relevant role in the assessment of the probability of
occurrence of the accident scenarios.

In this book, a number of methods for computing the reliability and risk
characteristics of complex technological systems are illustrated. The
presentation of the theory behind the methods is of pedagogical nature,
but supported with practical examples for a clearer understanding of how
these methods can be applied in the field.

Chapter 1 introduces the basics of the Markov approach to system
modeling for reliability and availability analysis. In this approach, the
stochastic process of evolution of the system in time is described through
the definition of the system states, the possible transitions among these
states and their probabilities of occurrence. The various system states are
defined in terms of the states of the components comprising the system.
The components are not restricted to having only two possible states but
rather may have a number of different states such as functioning, in
standby, degraded, partially failed, completely failed, under maintenance,
etc.; the various failure modes of a component may also be defined as
states. The transitions between the states occur randomly in time, because
caused by various mechanisms and activities such as failures, repairs,
replacements and switching operations, which are random in nature.
Under specified conditions, the stochastic process of the system evolution
may be described as a so called Markov process which is mathematically
described by a system of probability equations which can be solved
analytically or numerically.

Chapter 2 gives a short introduction to the theory of Monte Carlo
simulation for reliability and availability analysis. The presentation is
kept at an intuitive and practical level. The Monte Carlo simulation
method is shown to offer a powerful tool which can be of great value in
the analysis of complex systems, due to its inherent capability of
achieving a closer adherence to reality in the representation of the system
stochastic behaviour. In general terms, it may be defined as a
methodology for obtaining estimates of the solution of mathematical
problems by means of random numbers. By random numbers we mean
numbers obtained through a roulette-like machine of the kind utilized in
the gambling casinos at the Montecarlo Principate: hence the name of the
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method. The random sampling of numbers was utilized in the past, well
before the development of the present computers, by skillful scientists.
The first example of use of what we now call Monte Carlo method seems
to go back to the French naturalist Buffon (1707-88) who considered a set
of parallel straight lines a distance D apart onto a plane and computed the
probability P that a segment of length L < D randomly positioned on the
plane would intersect one of these lines. The theoretical expression he
obtained was

_L/D
P—%

Possibly not completely convinced about the correctness of his result,
Buffon had the idea of checking the above expression by actually
drawing parallel lines and repeatedly throwing a needle on the floor of his
house to experimentally estimate the probability P as the ratio of the
number of intersections to the total number of throws, thus acquiring the
honour of being the inventor of the Monte Carlo method. It is interesting
to mention that, later on, Laplace noticed that the Buffon's experiment
represented a device for computing 7 just by throwing a needle on a
floor with parallel lines. Successively other scientists used similar
methods to solve integrals and probability problems. Eventually, the
revival of the method seems to be ascribed to Fermi, von Neumann and
Ulam in the course of the Manhattan Project during World War II. Back
then, the Monte Carlo method provided the only option for solving the
six-dimensional integral equations employed in designing shielding for
nuclear devices. It was probably the first case in human history in which
solutions based on trial and error were clearly too risky. Currently, Monte
Carlo simulation seems to be the only method that can yield solutions to
complex multi-dimensional problems. For about three decades it was
used almost exclusively, and extensively, in nuclear technology.
Presumably, the main reason for its use being limited to only nuclear
applications was the lack of suitable computing power: indeed, the
method is computer memory- and time-intensive. With the increasing
availability of fast computers the application of the method becomes
more and more feasible in the practice of various fields, including
reliability and risk analysis.
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Chapter 3 combines the modeling power of the Markov approach with the
computing power of Monte Carlo simulation. This gives rise to the so
called Markov Chain Monte Carlo techniques which offer an effective
way for sampling from complicated probability distributions in high-
dimensional spaces. This is useful in such tasks as image reconstruction,
parameter identification, computing the equilibrium distribution and
associated energy levels of statistical mechanics systems, inverse problem
solving and more generally Bayesian posterior inference. Examples of
application are provided with respect to the characterization of the failure
and degradation behaviours of components and structures.

Chapter 4 illustrates the use of Genetic Algorithms within the area of RAMS
(Reliability, Availability, Maintainability and Safety) optimization. The theory
behind the operation of genetic algorithms is presented. The steps of the
algorithm are sketched to some details for both the traditional breeding
procedure as well as for more sophisticated breeding procedures. The necessity
of affine transforming the fitness function, object of the optimization, is
discussed in detail, together with the transformation itself. Finally, two
examples of application are illustrated with regards to problems of reliability
allocation and periodic inspection and maintenance. RAMS optimization is
classically based on quantifying the effects that design and operation choices
and testing and maintenance activities have on a number of system attributes
like:

e R(x) = System Reliability;

e A(x) = System Availability (U(x)= system unavailability
=1-A(x));

e M(x) = System Maintainability, ie. the unavailability
contribution due to test and maintenance;

® S(x) = System Safety, normally quantified in terms of the system
risk measure Risk(x) (e.g. as assessed from a Probabilistic Risk
Analysis);

where x represents the vector of the design, operation and maintenance
decision variables. A quantitative model is used to asses how the design,
operation and maintenance choices affect the system RAMS attributes and the
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involved costs (C(x) = Cost required to implement the vector choice x).
Thus, the design, operation and maintenance optimization problem must be
framed as a multiple criteria decision making problem where RAMS&C
attributes act as the conflicting decision criteria with the respect to which
optimization is sought and the relevant design and maintenance parameters
(e.g. redundancy configuration, component failure rates, maintenance
periodicities, testing frequencies) act as the decision variables x. Then, the
multiple criteria decision-making analysis aims at finding the appropriate
choices of reliability design, testing and maintenance procedures that optimally
balance the conflicting RAMS and Costs (RAMS&C) attributes. In this
general view, the vector of the decision variables x encodes the
parameters related to the inherent equipment reliability ( e.g. per demand
failure probability, failure rate, etc.) and to the system logic configuration
(e.g. number of redundant trains, etc.), which define the system reliability
allocation, and those relevant to testing and maintenance activities (test
intervals, maintenance periodicities, renewal periods, maintenance
effectiveness, mean repair times, allowed downtimes, etc...) which
govern the system availability and maintainability characteristics.

Chapter 5 investigates the issues related to dependent failures and illustrates
the approaches used to model their effects on system reliability. This is a quite
crucial issue in reliability and risk analysis since in spite of the fact that all
modern technological systems are highly redundant, they still fail because
of dependent failures which can defeat the redundant system protective
barriers and thus contribute significantly to risk; quantification of such
contribution is thus necessary to avoid gross underestimation of risk.

Chapter 6 is devoted to the presentation of the concept of importance
measure in reliability and risk analysis. From a broad perspective,
importance measures aim at quantifying the contribution of components
to the system performance, e.g. its reliability, availability or safety. For
example, the calculation of importance measures is a relevant outcome of
the Probabilistic Risk Assessment (PRA) of nuclear power plants which
allows evaluating the relevance of components (or more generally,
events) with respect to their impact on the risk measure of interest,
usually the Core Damage Frequency (CDF) or the Large Early Release
Frequency (LERF). In other system engineering applications, such as
aerospace and transportation, the impact of components is considered on
the system unreliability or, for renewal systems such as the
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manufacturing production and power generation ones, on the system
unavailability. Information about the importance of the components
constituting a system, with respect to its safety and availability, is of great
practical aid to system designers and managers. Indeed, the identification
of which components mostly determine the overall system behavior
allows one to trace system bottlenecks and provides guidelines for
effective actions of system improvement.

Chapter 7 provides some basic notions related to sensitivity and
uncertainty analysis, in support to the analysis of the reliability and risk
of complex systems under incomplete knowledge of their behavior.
Indeed, as mentioned at the beginning, uncertainty is an unavoidable
component affecting the behavior of systems and more so with respect to
their failure limits. Thus, uncertainties arise in the values of the
parameters and in the hypotheses on the structure of the models used to
represent the system failure behavior. Such uncertainties propagate within
the model used to compute the system reliability and risk, which become
uncertain themselves. In spite of how much dedicated effort is put into
improving the understanding of systems, components and processes
through the collection of representative data, the appropriate
characterization, representation, propagation and interpretation of
uncertainty will remain a fundamental element of the reliability and risk
analyses of any complex system. With respect to uncertainty, the final
objective of reliability analysis and risk assessment is to produce insights
in the analysis outcomes which can be meaningfully used by the decision
makers. This entails that a number of topics be successfully addressed
[12]:

—How to collect the information (e.g. in the form of expert judgment)
and input it into the proper mathematical format.

—How to aggregate information from multiple, diverse sources into a
single representation of uncertainty.

—How to propagate the uncertainty through the model so as to obtain
the proper representation of the uncertainty in the output of the
analysis.

—How to present and interpret the uncertainty results in a manner that is
understandable and useful to decision makers.

—How to perform sensitivity analyses to provide insights with respect to
which input uncertainties dominate the output uncertainties, so as to
guide resources towards an effective uncertainty reduction.
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In general, uncertainty can be considered essentially of two different
types: randomness due to inherent variability in the system (i.e., in the
population of outcomes of its stochastic process of behavior) and
imprecision due to lack of knowledge and information on the system. The
former type of uncertainty is often referred to as objective, aleatory,
stochastic whereas the latter is often referred to as subjective, epistemic,
state-of-knowledge [12,13]. Whereas epistemic uncertainty can be
reduced by acquiring knowledge and information on the system, the
aleatory uncertainty cannot and for this reason it is sometimes called
irreducible uncertainty.

The distinction between aleatory and epistemic uncertainty plays a
particularly important role in the risk assessment framework applied to
complex engineered systems such as nuclear power plants. In the context
of risk analysis, the aleatory uncertainty is related to the occurrence of the
events which define the various possible accident scenarios whereas
epistemic uncertainty arises from a lack of knowledge of fixed but poorly
known parameter values entering the evaluation of the probabilities and
consequences of the accident scenarios [12].

With respect to the treatment of uncertainty, in the current reliability
analysis and risk assessment practice both types of uncertainties are
represented by means of probability distributions [6]. Alternative
representations based on different notions of uncertainty are being used
and advocated in the context of reliability and risk analyses [12,14-16],
questioning whether uncertainty can be represented by a single
probability or whether imprecise (interval) probabilities are needed for
providing a more general representation of uncertainty [17- 20]. It has
also been questioned whether probability is limited to special cases of
uncertainty regarding binary and precisely defined events only. Suggested
alternatives for addressing these cases include fuzzy probability [21-23]
and the concept of possibility [24-26]. Furthermore, probabilities have
been criticised for not reflecting properly the weight of the evidence they
are based on, as is done in evidence theory [27].

The issue of which framework is best suited for representing the different
sources of uncertainty is still controversial and worth of further
discussion. In the Chapter, the discussion is limited to the probabilistic
representation of uncertainty, which is currently the most widely used in
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practice. A recent critical review of the alternative frameworks of
representation of uncertainty is provided in [28], from the starting point
of view that a full mathematical representation of uncertainty needs to
comprise, amongst other features, clear interpretations of the underlying
primitive terms, notions and concepts. The review shows that these
interpretations can be formulated with varying degrees of simplicity and
precision.

From the point of view of the contents of the book, most of the material
used to illustrate and address the above computational methods and issues
has been drawn from the specialized literature on the reliability and risk
analyses of complex systems. The specific contents are limited to a
number of relevant topics and techniques which, in spite of not being
exhaustive of the very extensive subject of reliability and risk analyses,
can form the background material for a senior undergraduate or graduate
university course on the subject or as basis for the initiation of young
researchers to the field. To this aim, several numerical examples have
been provided in support to the theory.

Finally, the realization of the book would have not been possible without
the support of several people. In particular, I would like to thank
Professors George Apostolakis (Massachusetts Institute of Technology),
Marzio Marseguerra (Politecnico di Milano) and Drs. Luca Podofillini
(Paul Scherrer Institute) and Andrea Zoia (Politecnico di Milano) for
their contributions to the development of the Chapters {7}, {2, 4}, {1, 4,
6}, {3} and the examples therein, respectively. Many thanks are also due
to Dr. Giulio Gola (Halden Reactor Project) for the initial translation of
the Italian lecture notes at the basis of the material of Chapter 7 (it would
have been too ‘risky’ to leave them as such). My last words of
acknowledgments go to Francesco Di Maio who is currently pursuing a
PhD at the Politecnico di Milano under my supervision: to him goes my
deepest gratitude for the careful, precise work and for the unbreaking
passion he has put into the editing of the book (perhaps motivated by the
suffering he had to go through when studying the subject on the original
lecture notes for my course).

Enrico Zio
Milano, July 2008
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