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PREFACE

Task 2 of the System and Decision Sciences Area, Optimization, is a
central methodological tool of systems analysis. It is used and needed by
many Tasks at IIASA, including those of the Energy Systems and the Food
and Agriculture Programs. In order to deal with large-scale applications by
means of decomposition techniques, it is necessary to be able to optimize
functions that are not differentiable everywhere. This is the concern of
the subtask Nonsmooth Optimization. Methods of nonsmooth optimiza-
tion have been applied to a model for determining equilibrium prices for
agricultural commodities in world trade. They are also readily applicable
to some other IIASA models on allocating resources in health care systems.

This volume is the result of a workshop on Nonsmooth Optimization
that met at IIASA in the Spring of 1977. It consists of papers on the
techniques and theory of nonsmooth optimization, a set of numerical test
problems for future experimentation, and a comprehensive research bibli-

ography.
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INTRODUCTION

This volume is the result of a workshop on nonsmooth optimization
held at ITASA from March 28 to April 8, 1977. The designation ‘“‘First
World Conference on Nonsmooth Optimization™, proposed in jest by one
of the participants after noting that there were only nine others in the
room with him, is, however, appropriate because of the various countries
represented, and because the number of scientists doing research in this
field at that time was rather small.

The small number of participants, and the workshop’s unusual length,
made it possible to achieve a substantial exchange of information. Each
morning (three working hours) was devoted to the talk of one participant,
who therefore could present his work quite thoroughly. During the after-
noons, discussions took place on related topics, such as: systems of in-
equalities, constrained problems, test problems and numerical experiments,
smooth approximation of nonsmooth functions, optimization with noise,
direction-finding procedures and quadratic programming, line searches,
general decomposition, .... However, this workshop format would have
been a failure were it not for the fact that everyone was alert and active
even when not “in the spotlight”. We are very grateful to all the partici-
pants, who contributed to the success of the workshop by their numerous
questions and interruptions during both the formal and informal presenta-
tions.

This workshop was held under the name Nondifferentiable Optimiza-
tion, but it has been recognized that this is misleading, because it suggests
“optimization without derivatives”. As we view it, nonsmooth optimiza-
tion (NSO) is concerned with problems having functions for which gradi-
ents exist almost everywhere, but are not continuous, so that the usual
gradient-based methods and results fail. The contents of these Proceedings
should convince the reader of the importance of being able to compute
(generalized) gradients in NSO.

We have adopted the following topical classification for the papers:
subgradient optimization (three papers), descent methods (four papers),
and field of applicability (one paper).

The first paper, by B.T. Poljak, exhaustively surveys the Soviet work on
subgradient optimization done since 1962. For this method he gives the

1
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most important results obtained and the various extensions that have been
developed.

J.L. Goffin studies rates of convergence in subgradient optimization.
He shows under which conditions linear convergence can be obtained and
provides bounds on the best possible rate of convergence. These bounds
are given in terms of condition numbers that do not depend on derivative
continuity.

The paper by R. Chaney and A.A. Goldstein addresses the question:
What is the most general framework for the method of subgradient optimi-
zation to be applicable and convergent? Hence, they present the method
in an abstract setting and study the minimal hypotheses required to ensure
convergence.

One of the important conclusions of this workshop has been that
nonsmooth optimization and nonlinear programming (NLP) are, in fact,
equivalent fields. It was known that NLP is contained in NSO via exact
penalty function methods, but B.N. Pshenichnyi’s paper demonstrates the
reverse containment via feasible direction methods.

In his paper, C. Lemarechal describes, in a unified setting, descent
methods developed recently in Western countries. He also provides ideas
for improvement of these methods.

Many methods for solving constrained optimization problems require
the repeated solution of constrained least squares problems for search
direction determination. An efficient and reliable algorithm for solving
such subproblems is given in the paper by R. Mifflin.

The paper by P. Wolfe is concerned with line searches. He gives an APL
algorithm that effectively deals with the issues of when to stop a line search
with a satisfactory step size and how to determine the next trial step size
when the stopping criterion is not met.

The last paper, by J. Gauvin, studies the differential properties of
extremal value functions. This is important for the application of various
decomposition schemes for solving large-scale optimization problems,
because these approaches require the solution of nonsmooth problems
involving extremal-value functions, and in order to guarantee convergence
we need to know whether certain’ “semismoothness™ conditions (such as
Lipschitz continuity) are satisfied.

We then give four nonsmooth optimization test problems. They were
selected because they are easy to work with and because they are repre-
sentative both of the field of applicability and of the range of difficulty of
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NSO. Problems 1 and 3 are examples of minimax problems and are not
very difficult. Problem 2 is a nonconvex problem coming from a well-
known NLP test problem, and problem 4 involves a piecewise-linear func-
tion. The last two are sufficiently difficult to slow down considerably the
speed of convergence of any of the NSO methods we know of.

We conclude this volume with a large NSO bibliography. It was com-
piled by the participants and is an update of the bibliography given in
Mathematical Programming Study 3. We wish to thank D.P. Bertsekas,
V.F. Demjanov, M.L. Fisher, and E.A. Nurminskii for the items they
communicated to us.

On behalf of all the participants we would like to acknowledge
ITIASA’s generous support and to thank I. Beckey, L. Berg, A. Fildes, and
G. Lindelof for their optimal organizational contributions, which led to
a smooth-running workshop.

We are especially indebted to M.L. Balinski who was instrumental in
establishing a Nonsmooth Optimization group at IIASA and who spent
much of his time and energy to secure a truly international participation
at this workshop.

C. Lemarechal
R. Mifflin
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SUBGRADIENT METHODS:
A SURVEY OF SOVIET RESEARCH

B. T. Poljak

This paper reviews research efforts by Soviet authors con-
cerning the subgradient technique of nondifferentiable minimiza-
tion and its extensions. It does not cover the works based on the
concept of steepest descent (by V.F. Demjanov, B.N. Pshenichnyi,
E.S. Levitin, and others) or on the use of a specific form of the
minimizing function (for example minimax techniques). The paper
essentially uses the review by N.Z. Shor [1]. The theorems given
below are mostly simplified versions of results shown in the orig-
inal papers.

1. THE SUBGRADIENT METHOD

Let f£(x) be a convex continuous function in the space R%. A
vector 3f(x) € R" is called its subgradient at the point x, if it
satisfies the condition

£(x+y) > £(x) + (3f(x),y) , wye€RrR® . (1)

A subgradient exists (although, generally speaking, it may be not

unique) for all x € R®. If f(x) is differentiable, the subgradient
is unique and coincides with the gradient 58f(x) = Vf(x). The rules
.0f subgradient calculation for various types of functions are well

known [2,3]. 1In particular, with f(x) = max f, (x) where f.(x) are
1<i<m 1
convex differentiable functions, it is true that

Af (x) = Y a,VE. (x) , a, >0 ,
ier(x) * * =

a, =1 , I(x) {i : f.(x) = £(x)}
€T (x) * *



(for instance one may take 93f(x) = Vfi(x) where i € I(x) is arbi-

trary).

The subgradient minimization method for f(x) on R" is an

iterative process of the form
X1 = X~ YV RE () /|3 (x) | (2)

where Y 2 0 is a step size. For differentiable functions this
method coincides with the gradient one. The major difference be-
tween the gradient and the subgradient methods is that, generally
speaking, the direction —af(xk) is not a descent direction at the
point Xy i i.e., the values of f(xk) for nondifferentiable functions
do not decrease monotonically in the method (2).

The subgradient method was developed in 1962 by N.Z. Shor and
used by him for solving large-scale transportation problems of
linear programming [4]. Although published in a low-circulation
publication, this pioneering work became widely known to experts
in the optimization area in the USSR. Also of great importance
for the propagation of nondifferentiable optimization concepts
were the reports by the same author presented in a number of con-
ferences in 1962-1966.

Publication of papers [5,6,7] giving a precise statement of
the method and its convergence theorems may be regarded as the

culmination of the first stage in developing subgradient techniques.

Let us get down to describing the basic results concerning the
subgradient method. As is known, the gradient method for minimiza-
tion of smooth functions employs the following ways to regulate
the step-size:

Y = ol Bf(xk) I

X = XK

K41 - an(xk) i 0 <ac<a

k

(the ordinary gradient method);



= arg min f(x, - Yaf(xk)/Haf(Xk)H)+

"
K Y

(the steepest descent method) .

Simple examples may be constructed to show that neither of
these methods converges in nondifferentiable minimization; this
necessitates the construction of new principles of selecting the
step size. Consider the major ones. Hereinafter we shall assume
f (x) to be convex and continuous and denote f* = inf f(x) and
X* = Arg min f(x).

(a) Vo =% 2 0. This constant-step method was suggested in
[4]. The simplest example, f(x) = |x|, x¢€ R1, explicitly proves
that this method does not converge. One may show, however, that it
gives a solution "with an accuracy of y".

Theorem 1 [U4]

Let X* be nonempty. Then for any § > 0 there exists Yy >0
such that in the method (2) with v, =y, 0 < y < Y we have

lim inf f(x £f* + §.

k) <

Reference [4] has described the following way of step-size
regulation resting upon this result, although it has not been en-
tirely formalized. A certain Yy > 0 is chosen and the computation
is made with Y =Y until the values of f(xk) start to oscillate
about a certain limit. After this y is halved and the process is
repeated.

(b) The sequence Yy is chosen a priori regardless of the
computation results and satisfies the condition

ll~18

Yo = ° Y 70 . (3)

k=0

This way of choosing the step-size has been suggested in [5] and
[6] independently.

tHereafter arg min p(y) will mean an arbitrary minimum point of

the function p(y), Arg min p(y) is the set of all minimum points.
Y



Theorem 2 [5,6]

In the method (2),(3) lim inf f(xk) = f*, If X* is nonempty
and bounded then p(xk,x*) + 0, where

p(x,X*) = min | x - x*|| .
x*eX*

It is clear that in the general case the method (2),(3) can-
not converge faster than Y tends to zero. In particular, this
method never converges at the rate of geometrical progression or
at the rate

0(k™S%), s>1 .

(c) In certain cases the value of f* is known. For instance,
if

m
f(x) = z fi (X)+ ’
i=1
where fi(x) are convex functions,
fi(x)t = max {O,fi(x)} i

and the system of inequalities fi(x) <0i=1,...,mis solvable,
then X* is the set of solutions of this system and f* = 0. Then
one may take
- f£*
(f(Xk) £*)

=A— , 0<A<2 . (4)
lo£ 6o |

Tk
In solving systems of inequalities the method (3),(4) coincides
with the known relaxation method of Kaczmarz, Agmon, Motzkin,
Schoenberg, and Eremin [8]. The method for general problems of
nonsmooth function minimization has in essence been suggested by

I.I. Eremin [9] and systematically developed in [10].



Theorem 3 [9,10]

Let x* be the unigque minimum point for f(x). Then in the
method (2), (4) X > x*, If the condition
f£(x) - £* > 2flx - x*|| , 2 >0 (5)

holds, the method converges with the rate of a geometrical pro-

gression.

The advantages of the method (2),(4) are the simplicity of
selecting the step size (since no auxiliary problems should be
solved and no characteristics of f(x) other than f* should be
known) and its applicability, since for a smooth strongly convex
f(x) the method also converges with the rate of a geometrical
progression [10]. Reference [10] has shown a way to modify the

technique when f* is unknown.

(d) N.Z. Shor [11] has suggested an essentially different
method for choosing Vs

k
Y = Yo4 » 0 <g< 1 . (6)

Note that the condition (3) is not satisfied for (6).

Theorem 4 [11,12,13]

Let the condition
(3F(x) ,x = x*) > || 3f(x) || || x = x*|| , 2 >0 (7)
hold. Then there exists a pair q (which depends on &) and y (which

depends on || x, - x*| ,%) such that with 1 > g > g, Y, > Y in the
method (2),(6) we have

k
Il x - x*[| <cla,vypa .

The relationship of g(%) and y (|| Xy = x*| ,%) may be expressed

explicitly. However, practical implementation of the method (2),(6)



10

faces difficulties because generally the values of £ and

I Xq - x*|| are unknown.

The above results prove that the convergence rate for any of
the step-size regulating rules is linear at best. The denominator
of the geometrical progression for the ill-conditioned problems
(i.e. for functions with greatly extended level sets) is near unity.
Thus the convergence rate of all the versions of the subgradient

method may be rather poor.

2. ACCELERATING CONVERGENCE OF THE SUBGRADIENT METHOD

One of the reasons why the subgradient method converges so
slowly lies in its Markov nature. The subsequent iteration makes
no use of the information obtained at the previous steps. The ma-
jor concept of all techniques for accelerating convergence is the

use of this information (i.e. the values f(xi), Bf(xi), i=0,...,k=1).

The first methods of this type were those developed by Kelley
and by Cheney and Goldstein [14,15], based on piecewise-linear ap-
proximation of the function. An original technique suggested in
[16] and [17] independently made use only of the values Bf(xi). Let
Mk be a polyhedron in R™ in which the minimum point is localized

after k iterations. Then for an arbitrary x € M, _ one may take

k+1 k

Mo = M0 {x:QF(x  4) % = % 4) <0} .

If the center of gravity Mk is taken as the point x one may show

k+1
[17] that for the wvolume Vk of the polyhedron Mk the following ex-

pression holds:
N

¥oo € [I=(1 - N%)

K+1 ¥

k ’

where N is the dimension of the space. Thus for problems of any
dimension



