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Preface

This book has grown out of notes for a course that the second author has given for more
years than he cares to remember — which, but for the first author who kept various versions,
would never have come to this. Specifically, the Institute of Sound and Vibration Research
(ISVR) at the University of Southampton has, for many years, run a Masters programme
in Sound and Vibration, and more recently in Applied Digital Signal Processing. A course
aimed at introducing students to signal processing has been one of the compulsory mod-
ules, and given the wide range of students’ first degrees, the coverage needs to make few
assumptions about prior knowledge — other than a familiarity with degree entry-level math-
ematics. In addition to the Masters programmes the ISVR runs undergraduate programmes
in Acoustical Engineering, Acoustics with Music, and Audiology, each of which to varying
levels includes signal processing modules. These taught elements underpin the wide-ranging
research of the ISVR, exemplified by the four interlinked research groups in Dynamics,
Fluid Dynamics and Acoustics, Human Sciences, and Signal Processing and Control. The
large doctoral cohort in the research groups attend selected Masters modules and an acquain-
tance with signal processing is a ‘required skill’ (necessary evil?) in many a research project.
Building on the introductory course there are a large number of specialist modules ranging
from medical signal processing to sonar, and from adaptive and active control to Bayesian
methods.

It was in one of the PhD cohorts that Kihong Shin and Joe Hammond made each other’s
acquaintance in 1994. Kihong Shin received his PhD from ISVR in 1996 and was then a
postdoctoral research fellow with Professor Mike Brennan in the Dynamics Group, then
joining the School of Mechanical Engineering, Andong National University, Korea, in 2002,
where he is an associate professor. This marked the start of this book, when he began ‘editing’
Joe Hammond’s notes appropriate to a postgraduate course he was lecturing — particularly
appreciating the importance of including ‘hands-on’ exercises — using interactive MATLAB®
examples. With encouragement from Professor Mike Brennan, Kihong Shin continued with
this and it was not until 2004, when a manuscript landed on Joe Hammond’s desk (some bits
looking oddly familiar), that the second author even knew of the project — with some surprise
and great pleasure.
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In July 2006, with the kind support and consideration of Professor Mike Brennan, Kihong
Shin managed to take a sabbatical which he spent at the ISVR where his subtle pressures —
including attending Joe Hammond’s very last course on signal processing at the ISVR — have
distracted Joe Hammond away from his duties as Dean of the Faculty of Engineering, Science
and Mathematics.

Thus the text was completed. It is indeed an introduction to the subject and therefore the
essential material is not new and draws on many classic books. What we have tried to do is
to bring material together, hopefully encouraging the reader to question, enquire about and
explore the concepts using the MATLAB exercises or derivatives of them.

It only remains to thank all who have contributed to this. First, of course, the authors
whose texts we have referred to, then the decades of students at the ISVR, and more recently
in the School of Mechanical Engineering, Andong National University, who have shaped the
way the course evolved, especially Sangho Pyo who spent a generous amount of time gath-
ering experimental data. Two colleagues in the ISVR deserve particular gratitude: Professor
Mike Brennan, whose positive encouragement for the whole project has been essential, to-
gether with his very constructive reading of the manuscript; and Professor Paul White, whose
encyclopaedic knowledge of signal processing has been our port of call when we needed
reassurance.

We would also like to express special thanks to our families, Hae-Ree Lee, Inyong Shin,
Hakdoo Yu, Kyu-Shin Lee, Young-Sun Koo and Jill Hammond, for their never-ending support
and understanding during the gestation and preparation of the manuscript. Kihong Shin is also
grateful to Geun-Tae Yim for his continuing encouragement at the ISVR.

Finally, Joe Hammond thanks Professor Simon Braun of the Technion, Haifa, for his
unceasing and inspirational leadership of signal processing in mechanical engineering. Also,
and very importantly, we wish to draw attention to a new text written by Simon entitled
Discover Signal Processing: An Interactive Guide for Engineers, also published by John
Wiley & Sons, which offers a complementary and innovative learning experience.

Please note that MATLAB codes (m files) and data files can be downloaded from the
Companion Website at www.wiley.com/go/shin_hammond

Kihong Shin
Joseph Kenneth Hammond
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1

Introduction to Signal Processing

Signal processing is the name given to the procedures used on measured data to reveal the
information contained in the measurements. These procedures essentially rely on various
transformations that are mathematically based and which are implemented using digital tech-
niques. The wide availability of software to carry out digital signal processing (DSP) with
such ease now pervades all areas of science, engineering, medicine, and beyond. This ease
can sometimes result in the analyst using the wrong tools — or interpreting results incorrectly
because of a lack of appreciation or understanding of the assumptions or limitations of the
method employed.

This text is directed at providing a user’s guide to linear system identification. In order
to reach that end we need to cover the groundwork of Fourier methods, random processes,
system response and optimization. Recognizing that there are many excellent texts on this,’
why should there be yet another? The aim is to present the material from a user’s viewpoint.
Basic concepts are followed by examples and structured MATLAB® exercises allow the user
to ‘experiment’. This will not be a story with the punch-line at the end — we actually start in
this chapter with the intended end point.

The aim of doing this is to provide reasons and motivation to cover some of the underlying
theory. It will also offer a more rapid guide through methodology for practitioners (and others)
who may wish to ‘skip’ some of the more ‘tedious’ aspects. In essence we are recognizing
that it is not always necessary to be fully familiar with every aspect of the theory to be an
effective practitioner. But what is important is to be aware of the limitations and scope of one’s
analysis.

I See for example Bendat and Piersol (2000), Brigham (1988), Hsu (1970), Jenkins and Watts (1968), Oppenheim
and Schafer (1975), Otnes and Enochson (1978), Papoulis (1977), Randall (1987), etc.

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd



2 INTRODUCTION TO SIGNAL PROCESSING

The Aim of the Book

We are assuming that the reader wishes to understand and use a widely used approach to
‘system identification’. By this we mean we wish to be able to characterize a physical process
in a quantified way. The object of this quantification is that it reveals information about the
process and accounts for its behaviour, and also it allows us to predict its behaviour in future
environments.

The ‘physical processes’ could be anything, e.g. vehicles (land, sea, air), electronic
devices, sensors and actuators, biomedical processes, etc., and perhaps less ‘physically based’
socio-economic processes, and so on. The complexity of such processes is unlimited — and
being able to characterize them in a quantified way relies on the use of physical ‘laws’ or other
‘models’ usually phrased within the language of mathematics. Most science and engineering
degree programmes are full of courses that are aimed at describing processes that relate to the
appropriate discipline. We certainly do not want to go there in this book — life is too short!
But we still want to characterize these systems — with the minimum of effort and with the
maximum effect.

This is where ‘system theory’ comes to our aid, where we employ descriptions or mod-
els — abstractions from the ‘real thing’ — that nevertheless are able to capture what may be
fundamentally common, to large classes of the phenomena described above. In essence what
we do is simply to watch what ‘a system’ does. This is of course totally useless if the system
is ‘asleep’ and so we rely on some form of activation to get it going — in which case it is
logical to watch (and measure) the particular activation and measure some characteristic of
the behaviour (or response) of the system.

In ‘normal’ operation there may be many activators and a host of responses. In most
situations the activators are not separate discernible processes, but are distributed. An example
of such a system might be the acoustic characteristics of a concert hall when responding to
an orchestra and singers. The sources of activation in this case are the musical instruments
and singers, the system is the auditorium, including the members of the audience, and the
responses may be taken as the sounds heard by each member of the audience.

The complexity of such a system immediately leads one to try and conceptualize
something simpler. Distributed activation might be made more manageable by ‘lumping’
things together, e.g. a piano is regarded as several separate activators rather than continu-
ous strings/sounding boards all causing acoustic waves to emanate from each point on their
surfaces. We might start to simplify things as in Figure 1.1.

This diagram is a model of a greatly simplified system with several actuators — and the
several responses as the sounds heard by individual members of the audience. The arrows
indicate a ‘cause and effect’ relationship — and this also has implications. For example, the
figure implies that the ‘activators’ are unaffected by the ‘responses’. This implies that there is
no ‘feedback’ — and this may not be so.

Activators Responses
R 5 _—
—_— St —_—

ystem

Figure 1.1 Conceptual diagram of a simplified system
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x(2) (1)
—_— System =

Figure 1.2 A single activator and a single response system

Having got this far let us simplify things even further to a single activator and a single
response as shown in Figure 1.2. This may be rather ‘distant’ from reality but is a widely used
model for many processes.

It is now convenient to think of the activator x(#) and the response y(¢) as time histories.
For example, x(f) may denote a voltage, the system may be a loudspeaker and y(r) the pressure
at some point in a room. However, this time history model is just one possible scenario. The
activator x may denote the intensity of an image, the system is an optical device and y may
be a transformed image. Our emphasis will be on the time history model generally within a
sound and vibration context.

The box marked ‘System’ is a convenient catch-all term for phenomena of great variety
and complexity. From the outset, we shall impose major constraints on what the box rep-
resents — specifically systems that are linear? and time invariant.> Such systems are very
usefully described by a particular feature, namely their response to an ideal impulse,* and
their corresponding behaviour is then the impulse response.” We shall denote this by the
symbol A(t).

Because the system is linear this rather ‘abstract’ notion turns out to be very useful
in predicting the response of the system to any arbitrary input. This is expressed by the
convolution® of input x(¢) and system A(z) sometimes abbreviated as

y(t) = h(t) * x(t) (1.1)

where “x” denotes the convolution operation. Expressed in this form the system box is filled
with the characterization A(t) and the (mathematical) mapping or transformation from the
input x(7) to the response y(¢) is the convolution integral.

System identification now becomes the problem of measuring x(¢) and y(¢) and deducing
the impulse response function A (¢). Since we have three quantitative terms in the relationship
(1.1), but (assume that) we know two of them, then, in principle at least, we should be able to
find the third. The question is: how?

Unravelling Equation (1.1) as it stands is possible but not easy. Life becomes considerably
easier if we apply a transformation that maps the convolution expression to a multiplication.
One such transformation is the Fourier transform.” Taking the Fourier transform of the
convolution® in Equation (1.1) produces

Y(f)=H(X(f) (1.2)

* Words in bold will be discussed or explained at greater length later.
2 See Chapter 4, Section 4.7.

3 See Chapter 4, Section 4.7.

# See Chapter 3, Section 3.2, and Chapter 4, Section 4.7.

5 See Chapter 4, Section 4.7.

6 See Chapter 4, Section 4.7.

7 See Chapter 4, Sections 4.1 and 4.4.

8 See Chapter 4, Sections 4.4 and 4.7.
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where f denotes frequency, and X(f), H(f) and Y (f) are the transforms of x(¢), () and
y(¢). This achieves the unravelling of the input—output relationship as a straightforward mul-
tiplication — in a ‘domain’ called the frequency domain.’ In this form the system is char-
acterized by the quantity H(f) which is called the system frequency response function
(FRF)."?

The problem of ‘system identification’ now becomes the calculation of H(f), which
seems easy: that is, divide Y (f) by X(f), i.e. divide the Fourier transform of the output by the
Fourier transform of the input. As long as X (f) is never zero this seems to be the end of the
story —but, of course, it is not. Reality interferes in the form of ‘uncertainty’. The measurements
x(t) and y(¢) are often not measured perfectly — disturbances or ‘noise’ contaminates them —
in which case the result of dividing two transforms of contaminated signals will be of limited
and dubious value.

Also, the actual excitation signal x () may itself belong to a class of random'! signals —
in which case the straightforward transformation (1.2) also needs more attention. It is this
‘dual randomness’ of the actuating (and hence response) signal and additional contamination
that is addressed in this book.

The Effect of Uncertainty

We have referred to randomness or uncertainty with respect to both the actuation and response
signal and additional noise on the measurements. So let us redraw Figure 1.2 as in Figure 1.3.

x(t) ————» System — ¥(1)

n (0 —(+) De=nw
|

x,,(t) V()

Figure 1.3 A single activator/response model with additive noise on measurements

In Figure 1.3, x and y denote the actuation and response signals as before — which may
themselves be random. We also recognize that x and y are usually not directly measurable and
we model this by including disturbances written as n, and n, which add to x and y — so that
the actual measured signals are x,, and y,,. Now we get to the crux of the system identification:
that is, on the basis of (noisy) measurements x,, and y,,, what is the system?

We conceptualize this problem pictorially. Imagine plotting y,, against x,, (ignore for
now what x,, and y,, might be) as in Figure 1.4.

Each point in this figure is a ‘representation’ of the measured response y,, corresponding
to the measured actuation x,,.

System identification, in this context, becomes one of establishing a relationship between
Ym and x,, such that it somehow relates to the relationship between y and x. The noises are a

9 See Chapter 2, Section 2.1.
10'See Chapter 4, Section 4.7.
1 See Chapter 7, Section 7.2.
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Figure 1.4 A plot of the measured signals y,, versus x,,

nuisance, but we are stuck with them. This is where ‘optimization’ comes in. We try and find
arelationship between x,, and y,, that seeks a ‘systematic’ link between the data points which
suppresses the effects of the unwanted disturbances.

The simplest conceptual idea is to ‘fit’ a linear relationship between x,, and y,,. Why
linear? Because we are restricting our choice to the simplest relationship (we could of course
be more ambitious). The procedure we use to obtain this fit is seen in Figure 1.5 where the
slope of the straight line is adjusted until the match to the data seems best.

This procedure must be made systematic — so we need a measure of how well we fit the
points. This leads to the need for a specific measure of fit and we can choose from an unlimited
number. Let us keep it simple and settle for some obvious ones. In Figure 1.5, the closeness
of the line to the data is indicated by three measures ey, e, and er. These are regarded as
errors which are measures of the ‘failure’ to fit the data. The quantity e, is an error in the y
direction (i.e. in the output direction). The quantity e, is an error in the x direction (i.e. in the
input direction). The quantity e is orthogonal to the line and combines errors in both x and
y directions.

We might now look at ways of adjusting the line to minimize ey, e,, er or some conve-
nient ‘function’ of these quantities. This is now phrased as an optimization problem. A most
convenient function turns out to be an average of the squared values of these quantities (‘con-
venience’ here is used to reflect not only physical meaning but also mathematical ‘niceness’).
Minimizing these three different measures of closeness of fit results in three correspondingly
different slopes for the straight line; let us refer to the slopes as m,, m,, mr. So which one
should we use as the best? The choice will be strongly influenced by our prior knowledge of
the nature of the measured data — specifically whether we have some idea of the dominant
causes of error in the departure from linearity. In other words, some knowledge of the relative
magnitudes of the noise on the input and output.

Y

Figure 1.5 A linear fit to measured data
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We could look to the figure for a guide:

* my seems best when errors occur on y, i.e. errors on output e,;
® m, seems best when errors occur on x, i.e. errors on input e,;
* mr seems to make an attempt to recognize that errors are on both, i.e. e7.

We might now ask how these rather simple concepts relate to ‘identifying’ the system in
Figure 1.3. It turns out that they are directly relevant and lead to three different estimators
for the system frequency response function H(f). They have come to be referred to in the
literature by the notation Hy(f), Ha(f) and Hy(f),'? and are the analogues of the slopes m,,
my, mr, respectively.

We have now mapped out what the book is essentially about in Chapters 1 to 10. The
book ends with a chapter that looks into the implications of multi-input/output systems.

1.1 DESCRIPTIONS OF PHYSICAL DATA (SIGNALS)

Observed data representing a physical phenomenon will be referred to as a time history or a
signal. Examples of signals are: temperature fluctuations in a room indicated as a function of
time, voltage variations from a vibration transducer, pressure changes at a point in an acoustic
field, etc. The physical phenomenon under investigation is often translated by a transducer
into an electrical equivalent (voltage or current) and if displayed on an oscilloscope it might
appear as shown in Figure 1.6. This is an example of a continuous (or analogue) signal.

In many cases, data are discrete owing to some inherent or imposed sampling procedure.
In this case the data might be characterized by a sequence of numbers equally spaced in time.

The sampled data of the signal in Figure 1.6 are indicated by the crosses on the graph shown
in Figure 1.7.

- i\, M\Aﬂ\ ) /\/\ /
NARY \)vv T/

Figure 1.6 A typical continuous signal from a transducer output

Time (seconds)

Volts /

1
i

sl

! >

Il

§

*‘ o 1 g7 —>

. - X Time (seconds)
1

1
U

Figure 1.7 A discrete signal sampled at every A seconds (marked with x)

12 See Chapter 9, Section 9.3.
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Road height
(h)

>

Spatial position (§)

Figure 1.8 An example of a signal where time is not the natural independent variable

For continuous data we use the notation x(¢), y(¢), etc., and for discrete data various
notations are used, e.g. x(nA), x(n), x, (n =0, 1,2, ... ).

In certain physical situations, ‘time’ may not be the natural independent variable; for
example, a plot of road roughness as a function of spatial position, i.e. h(§) as shown in
Figure 1.8. However, for uniformity we shall use time as the independent variable in all our
discussions.

1.2 CLASSIFICATION OF DATA

Time histories can be broadly categorized as shown in Figure 1.9 (chaotic signals are added to
the classifications given by Bendat and Piersol, 2000). A fundamental difference is whether a
signal is deterministic or random, and the analysis methods are considerably different depend-
ing on the ‘type’ of the signal. Generally, signals are mixed, so the classifications of Figure 1.9
may not be easily applicable, and thus the choice of analysis methods may not be apparent. In
many cases some prior knowledge of the system (or the signal) is very helpful for selecting an
appropriate method. However, it must be remembered that this prior knowledge (or assump-
tion) may also be a source of misleading the results. Thus it is important to remember the First
Principle of Data Reduction (Ables, 1974)

The result of any transformation imposed on the experimental data shall incorporate and be
consistent with all relevant data and be maximally non-committal with regard to unavailable
data.

It would seem that this statement summarizes what is self-evident. But how often do we
contravene it — for example, by ‘assuming’ that a time history is zero outside the extent of a
captured record?

Signals

[ L
Deterministic Random
|
| | '- | —I

1
Periodic Non-periodic 1 Stationary Non-stationary
—
Sinusoidal Complex Almost Transient (Chaotic)
periodic  periodic

Figure 1.9 Classification of signals



