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Preface

Circuits, both linear and nonlinear, remain the core components of most elec-
tronic and mechatronic equipment and devices to date. As industrial electronics
and mechatronics become mature, better functionality and reliability of these
technologies require more intriguing use of nonlinear circuits. This calls for
thorough investigation of dynamical characteristics and largest possible oper-
ating regimes of nonlinear circuits and systems. Of particular interest is the
fundamental nonlinear circuit theory that is still in the evolving phase of its
development today. In view of the exciting emergence of nano-technology and
the attractive quantum-computing future, nonlinear circuits have become even
more important and fundamental.

The fact that chaos is ubiquitous in nonlinear circuits has been one of the
major motivations for studying nonlinear circuit theory in recent years. A
number of workshop and conference proceedings, research monographs and
textbooks, special journal issues, and experimental results published previously
were focused on analysis and characterization of chaotic phenomena in various
nonlinear circuits. There were also many reports on chaos generation via circuit
design, mostly performed on platforms of some hypothetical systems such as
Chua’s circuit. These studies were essential in laying a foundation for further
development of both basic theory and engineering design of nonlinear circuits.

Yet, the traditional trend of understanding and analyzing chaos has evolved
into the new tasks of ordering and utilizing chaos over the past decade. A new
research direction in the field of applied chaos technology not only includes
controlling chaos, which means to weaken or completely suppress chaos when it
is harmful, but also includes anti-control of chaos, known also as chaotification,
which refers to enhancing existing chaos or purposely generating chaos when
it is useful and beneficial. One has witnessed increasing interest not only in
the traditional chaos analysis and chaos generation via circuitry but also in the
new consideration of utilizing chaos in real physical systems. This shows that
electronic engineers are really giving chaos more and more serious thought, and
it is believed that there is a significant change in attitude of engineers of our
generation toward this kind of engineering research. This book aims to bridge
the gap between these two phases of development and also to open up some
discussion of real applications where chaos can be put to technological use,
including communication, power electronics design, and so on.

Chaos, when under control, promises to have a major impact on many novel,
time- and energy-critical applications, such as high-performance circuits and
devices (e.g., delta-sigma modulators and power converters), liquid mixing,
chemical reactions, biological systems (e.g., in the human brain, heart, and



vi Preface

in perceptual processes), crisis management (e.g., in jet-engines and power
networks), secure information processing (e.g., chaos-based encryption), and
decision-making in critical events. This new and challenging research area has
embraced both analog and digital technologies and has become a scientific inter-
discipline, involving engineers in the fields of controls, systems, electronics,
mechanics, and biomedicine, as well as applied mathematicians, theoretical and
experimental physicists and, above all, circuit engineers and instrumentation
specialists. This book is a collection of some state-of-the-art surveys, tutorials,
and overview articles written by some experts in this area.

It is our hope that this book can serve as an updated and handy reference
for university professors, graduate students, laboratory researchers and indus-
trial practitioners, as well as applied mathematicians and physicists who are
interested in chaos in circuits and systems.

Guanrong Chen, City University of Hong Kong
Tetsushi Ueta, Tokushima University, Japan
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Abstract

An introduction to the design of chaotic oscillators is presented
from an electrical engineering point of view. Oscillators are am-
plifiers with unstable bias points. The basic design principle behind
chaotic oscillators is the connection of two electronic circuits which
are not in harmony. A number of configurations which may serve
as the physical mechanisms behind chaotic behavior are listed. The
behavior of an oscillator is explained by means of eigenvalue stud-
ies of the linearized Jacobian of the differential equations for the
mathematical model of the oscillator. The basic design principle is

demonstrated by means of different simple examples.



2 Chaotic Oscillators - Design Principles

1.1 Introduction and General Remarks

Radio amateurs and electronic engineers have observed chaotic performance
of electronic circuits since the invention of the triode amplifier by Lee de For-
est in 1906. The phenomena observed were called noise, nonlinear distortion,
parasitic oscillations, intermittent operation or asynchronous heteroperiodic
excitation. It was considered unwanted and impossible to investigate analyt-
ically. Edwin H. Armstrong (1890-1954) invented the regenerative circuit for
HF oscillations in 1912 (superheterodyne 1918, FM 1937). He possibly ob-
served chaos [1,2]. Balthasar van der Pol (1889-1959) reports about chaos as
“an irregular noise” [3-6]. Today (year 2001) we are able to investigate the
phenomena by means of computer simulation.

We are interested in chaos for two reasons: we want to avoid chaos and/or
we want to make use of chaos. In both cases it is necessary to study chaos in
order to understand and master the phenomena. Unfortunately we still need
analytical methods for the investigation of nonlinear systems in details. All our
analytical design methods are based on linear approximations.

Sinusoidal oscillators are normally considered second order systems. Many
topologies have been proposed for sinusoidal oscillators (Colpitts, Clapp, Hart-
ley, Pierce etc.). The design of an oscillator is normally based on the Barkhausen
criteria [7] according to which an oscillator is looked upon as an ideal finite gain
amplifier with a linear frequency determining feed-back circuit (Fig. 1.5). If
the poles of the whole linear circuit are placed on the imaginary axis in the
complex frequency plane (s-plane) we have an ideal oscillator. In order to start-
up the oscillator some component values are tuned so that the complex pole
pair of the circuit is placed in the right half plane (RHP) making the circuit
unstable. It is then hoped that the nonlinearities of the amplifier will give rise
to a limitation of the signals so that stable oscillations may occur. Possible
distortion is smoothed by means of filters. Very little is reported about the
mechanism behind the observed stable oscillations. Some authors even claim
that the complex pole pair “is brought back to the imaginary axis by the non-
linearities” which of course is nonsense. In short, an oscillator is an amplifier
circuit with an unstable DC bias point. Very seldom it is discussed how far
out in RHP the poles should be placed in order to optimize the oscillator e.g.
with respect to distortion. Due to parasitic memory components, the order of
a real oscillator is larger than two i.e. all oscillators are potentially chaotic.

If oscillators are coupled in some way so that energy could be exchanged
they try to synchronize (Fig. 1.1). Even chaotic oscillators try to synchronize.
This phenomena is observed everywhere in nature. If you consider a bee, a
fish, a bird or a dolphin being a high order chaotic oscillator you may observe
how a flock of bees, fish, birds or dolphins may behave as one body. One
single orange butterfly is not able to cross the channel from France to England
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but a ”cloud” of thousands of orange butterflies is able to cross. Possibly the
first observation of synchronization of man-made oscillators was done by C.
Huygens (1629-1695) who invented the pendulum clock in 1656. He reports
about synchronous time-keeping of two clocks hung on the same wall [3]. The
concept of synchronization might be the base for making use of chaos.

Z5 W

"Two Oscillators"”

with a non-linegr coupling

may give rise to chaos

¢

but for proper parameter choice

2  a

they may synchronise

FIGURE 1.1

“COUPLING OF TWO OSCILLATORS” Dansk Standard, Kollegievej 6,
DK - 2920 (Aknowledgement: Fig. 1.1 is copied and modified with permission
from Dansk Standard, Kollegievej 6, DK - 2920 Charlottenlund, Denmark.
http://www.ds.dk/).

Within the last 30 years we have been able to study the nonlinear distortion
phenomena by means of computer simulation and to some extent by means of
analytical investigation. The concept of chaotic oscillators has been defined by
means of a large number of examples. Very little has been reported concerning
classification of chaotic oscillators or procedures for design of chaotic oscillators
with prescribed attributes.

Amplifiers create power gain (from weak or small signals to strong or large
signals). Amplifiers are considered linear circuits having a DC bias point in
the left half plane (LHP) of the complex frequency plane.

Oscillators create sine waves as carriers of signals (Radio, TV) or square
waves as clock control in digital systems. Oscillators are considered nonlinear
circuits having a DC bias point in RHP.

Chaotic oscillators are deterministic systems of order higher than two which
apparently behave in a stochastic manner. The behavior of a chaotic system is



