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Preface

This book forms an attempt to bring together the theory and practice of industrial
microwave heating. Since the publications on the subject of microwave heating
by D. A. Copson (1962, 1975), H. Piischner (1966) and E. C. Okress (1968) during
the nineteen-sixties there has been a noteable absence of a book dealing with this
topic. During this period there has been much research and development into the
subject, reported in numerous publications spanning countless scientific journals.
Moreover, the theory and practice of microwave heating itself involves many
disciplines from electrical and process engineering to physics and material sciences.
We felt, therefore, that such fragmented information on dielectric theory and
properties of materials, design of equipment and the state of the art in applications
relevant to the manufacturing industry should be collated, updated, extended
and presented as a single reference volume.

Microwave heating was given special emphasis at the Electricity Council
Research Centre (ECRC) about ten years ago where a unit was established to carry
out research and development on the future of industrial applications. One of us
(A.C.M.) would like to acknowledge the positive role played by J. Lawton, DSc, of
the Central Electricity Research Laboratories, Leatherhead, in introducing him
to the subject of industrial microwaves and wishes to thank all his colleagues
in the electrophysics group at ECRC, particularly Drs. J. L. Driscoll, P. L. Jones
and T. Farrell, also R. Morrow of CSIRO, Lindfield, for many valuable discussions
and from whom he has learned a great deal. It was through contacts and collabor-
ation with Magnetronics Ltd. in those early days that brought together the authors
of this book.

It would be impossible to acknowledge all the people who have in one way or
another helped us with the essence of the book. However, we would particularly
like to thank Mr. G. Ratcliff of the ECRC for encouraging us to write this book,
for reading the manuscript and for making helpful suggestions and to Dr. R. Perkin
and Mr. W. Baker of ECRC for reading and commenting on part of the manuscript.
We owe a great debt to our colleagues in industry at large who have openly dis-
cussed their processes with us and to the many engineers in the Electricity Area
Boards for initiating many industrial contacts and thus keeping us aware of the



XViii Preface

problems and requirements for new industrial plant. We found stimulating the
many discussions we have had over the years with countless fellow researchers in
the field of industrial microwaves during the annual IMPI (International Microwave
Power Institute) Symposium and whose publications in the literature have made a
valuable contribution to this book. To this we would particularly like to thank
Dr. R. Schiffman of R. Schiffman Associates, New York, Dr. S. Stuchly of the
University of Ottawa, Mr. G. Freedman of Raytheon Co, Massachusetts, Dr. A. L.
VanKoughnett of the Communications Research Centre, Ottawa, Drs. W. Wyslouzil
and S. Kashyap of the NRC, Ottawa, Dr. S. Nelson of the U.S. Dept. of Agriculture,
Georgia, Dr. M. Stuchly of the Radiation Protection Bureau, Ottawa, Mr. J. Geiling
of Gerling Laboratories, California, Mr. B. Krieger of Cober Electronics, Inc.,
Connecticut, Mr. K. Ogura of Toshiba, Japan, our Swedish colleagues Dr. T. Ohlsson
of the SIK Institute, Goteborg, Dr. P. Risman of Microtrans, AB, Huskvama,
Mr. B. Edin of Scanpro AB, Bromma and many others.

One of us (R.J.M.) would particularly like to thank Mr. M. P. Tahany, Chairman
of Magnetronics Ltd., for his support and his many colleagues and staff, in particu-
lar Mr. J. Mitton, Mr. G. W. Geffery and Mr. G. A. Swann for frequent and helpful
discussions. In addition he would like fo thank his many customers who have
contributed so much of the industrial environment. To his wife, Judy, R.J.M.
owes a special debt for her support and encouragement in this project.

It would be impossible and invidious to mention all those who have contributed
to industrial microwave heating technology over many years but nonetheless the
very valuable contribution of Dr. R. Dunsmuir, Dr. J. E. Curran and J. R. G.
Twistleton of the former B. T. H. Research Laboratory, Rugby, deserve special
mention for the development of the 25KW, 900 MHz magnetron and associated
equipment, also Mr. H. B. Taylor for his valuable contribution to microwave
applicator design.

We would also like to extend our thanks to Mr. H. Barber of Loughborough
University, Mr. R. Shute of Microwave Heating Ltd., Luton, Mr. P. Giles and
Mr. K. Ike of Microwave Ovens Ltd., Shirley, Dr. R. Smith of Bradford University,
Mr. G. Crossley of Marconi (Specialised Components), Essex, Mr. P. Hulls and
Mr. A. Witt of the Electricity Council Marketing Department, for their continuing
help and support over many years. We are indebted to the ex-editor of the Journal
of Microwave Power, Dr. S. Stuchly, and many other publishers and their authors
for allowing us to reproduce some of their data. Such indebtedness extends to all
the authors given in the references. We would like to acknowledge the help we
have received from the secretarial staff at ECRC and especially from Margaret
Metaxas for typing and editing the manuscript and for her total commitment
during the last stages of the preparation of the book. Finally, we would be very
grateful to receive notification of any errors or amendments from any reader.

We would like to thank our publishers for their expert advice and cooperation
throughout this project.

A. C. Metaxas

Chester, England, 1982 R.J. Meredith
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Chapter 1

Introduction

Microwave heating as an industrial process is a technique which was originally
conceived about forty years ago. The advent of the magnetron during the Second
World War presented engineers and scientists in industry, universities and govern-
ment establishments with a unique challenge to put such a device for generating
microwaves into peaceful and profitable use. The task that lay ahead was quite
formidable because of the lack of appropriate equipment and more importantly
the lack of data on dielectric property of the materials which were considered as
candidates for microwave heating. During the late forties and early fifties, a con-
certed effort was made to obtain reliable data on material properties, led by von
Hippel and his co-workers at MIT. Their pioneering work on the properties of many
organic and inorganic materials in the frequency region 100 <f< 10'° Hz has
since formed, and still remains, a solid basis for the establishment of radio fre-
quency and microwave energy techniques in industry (von Hippel, 1954). Their
original work has since been expanded many times to fill the gaps which emerged
as more and more industrial applications came up for consideration. In addition
to this voluminous array of data on material properties, there have been significant
developments on the design of magnetrons, power supplies and ancilliary equip-
ment, giving greater reliability to this new technique. The engineering aspects of
many applications in terms of scale-up, continuous operation, automatic control,
etc., have considerably improved since the original days. More and more the various
disciplines of physics, chemistry, electrical, mechanical and process engineering,
thermodynamics, material science, etc., have blended according to need and
priority, in order to optimise the requirement of each particular process.

Before we briefly introduce the topics that will form the basis of this book, it
is important to define the frequency ranges for which the terms microwave and
radio frequency will be subsequently used. At frequencies below 100 MHz, where
conventional open wire circuits are used, the technique of industrial processing
will be referred to as radio frequency heating. However, at microwave frequencies
(above 500 MHz), wired circuits cannot be used and the power is transferred to
the applicator containing the material to be processed in waveguides. This tech-
nique will be referred to as microwave heating. In between there exists a diffuse



