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Preface

1. In these notes we present some introductory material on a particular class of
dynamical systems, called SEMIFLOWS. This class includes, but is not restricted to,
systems that are defined, or modelled, by certain types of differential equations of
evolution (DEEs in short). Our purpose is to introduce, in a relatively self-contained
manner, the basic results of the theory of dynamical systems that can be naturally
extended and applied to study the asymptotic behavior of the solutions of the DEEs
we consider. Equations of evolution include ordinary differential equations (ODEs
in short), partial differential equations of evolution (PDEEs in short), and other types
of equations, such as, for instance, stochastic or difference equations. As such, they
provide natural examples of dynamical systems, since one of the independent vari-
ables (usually called “time”) plays a different role than the other variables (which
in some situations may be called “space” variables). Thus, in this context, the heat
and wave equations are considered as prototypical examples of PDEEs, while ellip-
tic equations such as Laplace’s equation are not considered as evolution equations,
because in these equations all the variables have the same role. Here, we make the
further distinction that “time” evolves continuously; thus, we do not consider stochas-
tic equations, nor, except for some introductory examples, discrete systems (where
“time” varies along a sequence).

2. One of the major goals of the theory of dynamical systems is the study of the
evolution of a system, with the purpose of predicting, as accurately as possible, the
behavior of the system as time becomes large. A quite general feature of the systems
we consider, which is shared with other systems, is a property called DISSIPATIV-
ITY. Loosely speaking, this property can be described by the fact that all solutions
of these systems eventually enter, and remain, in a bounded set, called ABSORB-
ING SET. Thus, the evolution of the solutions of the system can be studied in this
set; as a result, the long time behavior of the system can be described by means of
certain subsets of the absorbing set. Among these, we shall consider three types of
sets, called respectively ATTRACTORS, EXPONENTIAL ATTRACTORS, and INERTIAL
MANIFOLDS. (Exponential attractors are sometimes also known as INERTIAL SETS.)
We will present the fundamental properties of these sets, and then proceed to show
the existence of some of these sets for a number of dynamical systems, generated
by fairly well known physical models. In particular, we shall consider in full detail
two particular PDEEs of evolution: a semilinear version of the heat equation, and
a corresponding version of the dissipative wave equation. These examples allow us
to illustrate the most important features of the theory of semiflows, and to provide a
sort of “template” that can then be applied, in a more or less straightforward fashion,
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to the analysis of other models, with the help of the many specialized references that
exist in the literature.

3.  Even a quick survey of much of the existing literature on dynamical systems,
both at the introductory and the specialized level, reveals that the notion of “dynami-
cal system” is used with many different meanings, according to the specific point of
view of the authors. At the opposite extreme, this notion may well be not defined
at all. In these notes, we do not attempt to give a general definition of dynamical
system; rather, we confine ourselves to a special class of systems, properly known as
CONTINUOUS, SEMI-DYNAMICAL SYSTEMS, or CONTINUOUS SEMIFLOWS. Here,
the term “continuous” is used to distinguish these systems from DISCRETE ones,
where only a sequence of successive time values are considered, and “semi-" refers
to the fact that time evolves, i.e. we only consider nonnegative values of the time
variable. For brevity, we shall refer to these systems as SEMIFLOWS (their precise
definition is given in section 2.2). In the introductory chapter 1, we consider more
general TWO-PARAMETER SEMIFLOWS or DYNAMICAL PROCESSES, which allows
us to include some nonautonomous difference or differential equations as generators
of dynamical systems. However, when our presentation can proceed in a more dis-
cursive way, and rigor is not an issue, we conform to the common use and adopt the
general term “dynamical system”.

4. Ingeneral, we say that an ODE defines a semiflow if the corresponding CAUCHY
PROBLEM is globally well posed, in the sense we define in section 1.2.1. We can
extend this definition to semiflows defined by PDEEs, by interpreting the PDEE
as an abstract ODE in a suitable Banach space X (see remark 3.2 in chapter 3).
This is a generalization of the usual interpretation of a system of ODEs as a sin-
gle differential equation in the Banach space X = R”, or in more general finite di-
mensional vector spaces, and explains the qualification of the systems generated by
PDEE:s as “infinite dimensional” ones, since in this case X is in general no longer
a finite dimensional space. Examples of PDEEs that can be put in such abstract
form are: the Navier-Stokes equations, the Kuramoto-Sivashinski equations, the
“original” Burger’s equation, the Chafee-Infante and Cahn-Hilliard reaction-diffusion
equations, the Korteweg-de Vries and the Maxwell equations (see chapter 6). Indeed,
many basic notions and results in the theory of the asymptotic behavior of infinite di-
mensional dissipative dynamical systems trace their origin in the study of the Navier-
Stokes equations of fluid dynamics, and have been inspired by a detailed analysis of
both the qualitative properties of their solutions, and their behavior with respect to
numerical computations.

5. Not surprisingly, much of the general terminology in the theory of dynamical
systems, as well as the general spirit of its qualitative results, borrows directly from
the qualitative theory of ODEs in R”. For example, we shall need to recall some
basic results on stability, equilibrium points, periodic orbits, ®-limit sets, etc. On
the other hand, in an effort to keep these notes within a reasonable length, we shall
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be forced to not discuss many other important topics. In particular, we regretfully
do not include any result on bifurcation theory. Among the many excellent and
fairly complete references on the qualitative theory of ODEs, including ODEs as
dynamical systems, we refer for example to Hirsch and Smale, [HS93], Jordan and
Smith, [JS87], Perko, [Per91], Amann, [Ama90], and Verhulst, [Ver90]. A few other
references, specifically on dynamical systems, are listed in the bibliography. Since
so many articles and books are continually being published, it is almost impossible
to compile an exhaustive list of references; on the other hand, an internet search can
provide all necessary updated references on any particular topic.

6.  These notes have their origin in a series of graduate seminars we held at the
Universities of Dresden, Wisconsin-Milwaukee and Tsukuba. Most of the material
we cover is relatively well known, although some of the results we present, in par-
ticular on the existence of an exponential attractor and of an inertial manifold for
semilinear dissipative wave equations, even if not entirely new, do not seem to enjoy
the recognition we feel they deserve. In part, our intention in writing these notes is to
be of some help to “beginners” in the area of infinite dimensional dynamical systems;
that is, anyone who, having a solid background in the classical theory of ODEs and
some knowledge of functional analysis in Sobolev spaces, wishes to proceed to the
study of examples of semiflows arising from DEEs, but may need some “smoothing
into” the subject, before turning to more general introductory texts, such as those of
Temam, [Tem88], the cycle of lectures by Oleinik, [01e96], or, most recently, Sell-
You, [SY02], and Robinson, [Rob01]. We also hope that these notes may serve as a
ready reference to researchers in more applied fields, who feel the need for a clear
presentation of the background material and results that are necessary for the study
of the specific systems they are interested in. To this end, we have tried to “build
up” the material in as careful and gradual progression as possible, with the goal of
presenting the main topics (in particular, the construction of the exponential attractor
and the inertial manifold), with a larger degree of detail than generally found in most
sources in the literature. If successful, our effort should put the reader in a better
position to refer to more specific texts on global attractors, exponential attractors,
and inertial manifolds, such as, respectively, the books by Babin and Vishik, [BV92],
Eden, Foias, Nicolaenko and Temam, [EFNT94], and Constantin, Foias, Nicolaenko
and Temam, [CFNT89].

7.  These notes are organized as follows. As an introduction to the main ideas
of the abstract theory of semiflows, in chapter 1 we present some well known and
well studied examples of finite dimensional dynamical systems, generated by such
celebrated ODEs as Duffing’s equations and Lorenz’ equations. In chapter 2 we
introduce the general definitions of SEMIFLOWS and their GLOBAL ATTRACTORS,
and we present two sufficient conditions that guarantee the existence of the attractor
under different assumption on the asymptotic properties of the semiflow. We also
describe an alternate construction of the attractor, based on the idea of a-contracting
maps. In chapter 3 we apply these results to show that the semiflows generated by
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two types of semilinear dissipative evolution PDEEs (one parabolic and the other
hyperbolic) admit a global attractor in a suitable space of weak solutions. In chap-
ter 4 we briefly develop the theory of EXPONENTIAL ATTRACTORS, and apply this
theory to the models of PDEEs considered in chapter 3. In chapter 5 we present
Hadamard’s GRAPH TRANSFORMATION METHOD for the construction of an INER-
TIAL MANIFOLD, and apply this method to a one-dimensional version of the PDEEs
considered in chapter 3. In chapter 6, we consider a number of other dynamical sys-
tems, generated by PDEEs that model various mathematical physics problems, and
briefly show how the methods developed in the previous chapters can be applied. In
chapter 7 we present a result, due to Mora and Sola-Morales, on the nonexistence
of inertial manifolds for the semiflow generated by a one-dimensional version of the
hyperbolic model of PDEE considered in chapter 3. Finally, in the Appendix we
collect, for the reader’s convenience, a list of various definitions and results from the
classical theory of ODEs and PDEs, functional and nonlinear analysis, semigroup
theory and Lebesgue-Sobolev spaces, that we use in these notes, and provide at least
one reference for each of the definitions and theorems we state.
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Songmu Zheng of Fudan University for very kind and stimulating discussion, and to
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Chapter 1

Dynamical Processes

In this chapter we introduce the definition of DYNAMICAL PROCESS, and the main
ideas of the theory of dynamical systems that we want to investigate. We illustrate
these ideas by examining some simple examples of dynamical processes generated
by finite systems of ODEs and by iterated maps.

1.1 Introduction

1. Roughly speaking, the theory of dynamical systems studies mathematical mod-
els of physical “systems” which evolve in time from a “state” which is known at
an initial moment; more specifically, how the evolution of a system depends, or is
influenced by, its initial state. The changing density of a population from a known
number of individuals (e.g., sharks in a regional sea; bacteria in an infected organism;
prey-predator models); the changing of weather patterns in a particular region; the
spreading of a rumor; the vapor trail in the wake of an airplane; the propagation of a
fire: all these would be examples of dynamical systems.

To study the evolution of a system, we assume that its state at each time ¢ can be
described generally by means of a function ¢ — u(z), where the independent “time’
variable 7 is measured in a parameter set 7 C R, and the corresponding dependent
variable is in a set X, called STATE SPACE. We also assume that the state u(t) of the
system at any given time ¢ depends not only on the value of 7, but also on its initial
configuration, i.e. on the value ug of the system at a previous time #y, with g and #
given or known. A natural goal of the theory is then to study the dependence of the
state u € X on the time ¢ € 7 and the INITIAL VALUES ug € X, tp € 7. In particular,
we can think of a dynamical system as a way of transforming an initial state ug into
a family of subsequent states u(t), parametrized by ¢+ € 7. We shall indeed assume
that there is a specified functional dependence of u € X from up € X and t, 1y € 7,
described by a map

1)

(,10,u0) — u(t,to,uo) . (1.1)

By specifying certain properties of this map, we come to a definition of a special
kind of dynamical systems.



2 1 Dynamical Processes

DEFINITION 1.1 Let X be an arbitrary set, and T be one of the sets N, Z, R>g
or R, where R>q := [0,+00[. Set

T2:={(t,7) €T xT:t>1}.

A TWO-PARAMETER SEMIFLOW, or DYNAMICAL PROCESS in X is a family S =
(S(,7))(¢,r)e2 of maps S(t,7): X — X, which satisfies the following conditions:
’ *

VeeT: S(t,t)=Ix (1.2)
(the identity in X ), and

Vity,to,;3 €T : S(t1,1)S(t2,13) = S(t1,13) . (1.3)

The following are familiar examples of dynamical processes.

Example 1.2
Let ¥ = Rand 7 =R. Let f be a continuous functionon R, and § = (S(#, 7)), r)c 72
be the family of maps S(z,7): R — R defined by

S(t,7)x = (exp (/th(s)ds)>x, x€R. (1.4)

Then, S is a dynamical process in R. Indeed, verification of (1.2) and (1.3) is imme-
diate.

Example 1.3

Let X = R", and A be an n x n matrix. Then, the family 7 = (e"4),cg of the exponen-
tials of the matrices A is a linear semigroup in X (see section A.3). Consequently,
the family S defined by

S(t,7):=et"D4,  (1,1) eR?,
is a dynamical process. I

Note that, in these examples, each map S(¢, 7) is linear; as we shall see, this needs
not be the case in general.

According to definition 1.1, a dynamical process S on a set X’ consists of a family
of transformations of X into itself, each defined by the map (1.1), that is,

X S up— u(t,t,up) =: S(t,T)up € X . (1.5)

We are then mainly interested in the dependence of the map ¢ — S(z,o)up on the “ini-
tial values” #o and uq or, sometimes, on ug only, for fixed #p. Of course, this requires
X to have some kind of topological structure, and we shall remove the provisional
nature of definition 1.1, supplementing it by a number of continuity conditions on



