B W e

- 8685470

Lecture Notes

in Physics

194

P. Pascual
R. Tarrach

QCD: Renormalization

for the Practitioner



8665470

Lecture Notes
in Physics

Edited by H. Araki, Kyoto, J. Eh|ers,' Miinchen, K. Hepp, Ziirich
R. Kippenhahn, Miinchen, H. A. Weidenmdiller, Heidelberg
and J. Zittartz, K&ln

194

|: il i
E8665470

P Pascual
R.Tarrach

QCD: Renormalization
for the Practitioner

Sprmger—VerIag
Berlin Heidelberg New York Tokyo 1984



Authors

P. Pascual

R. Tarrach ; _
Departamento de Fisica Tedrica, Universidad de Barcelona
Diagonal 647, Barcelona 28, Spain

ISBN 3-540-12908-1 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-12908-1 Springer-Verlag New York Heidelberg Bérlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1984

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2163/3140-543210 ’




PREFACE

These notes correspond to a GIFT (Grupo Interuniversi-
tario de Fisica Tedrica) course which was given by us in au-
fumn 1983 at the University of Barcelona. Their main‘subject
is renormalization in perturbative QCD and only the last chap-
ter goes beyond perturbation theory. They are essentially
.self contained and their aim is to teach the student the tech-
niques of perturbative QCD and the QCD sum rules. Their scope
however is limited. A much larger coverage of QCD is given by
a récent book -by Ynduréin [YN 83]. We both started to learn
QCD from Eduardo dg Rafael's notes [RA 78]; its influence is
conspicuous but the blunders are ours.

We thank Pilar Udina for the typing.

Barcelona, January 1984 P. Pascual

R. Tarrach
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I. THE Q.C.D. LAGRANGIAN

Since the establishment of Q.E.D., in the late 40's, as
the field theory for describing the elecgromagnetic interactions
of charged leptons with the electromagnetic field much effort ﬁas
been devoted to find a theory for the:strong interactions. In the
early 70's appeared quantum chromodynamics (Q.C.D.) as the theory'
of the strong interactions through a combined effort of many people
[GE 72), [FG 72], .[FG 731, [Gw 73], |PO 73], |WE 73], |WE 73a] .
Q.C.D. is a renormalizable quantum field theory of the strong
interactions. Its fundamental fields are Dirac spinor fields des-
cribing particles of spin_x , called quarks, with fractionary elec-
tric charge and gauge fields corresponding to chargeless and mass-
less particles of spin 1 , called gluons, which interact with the
quarks and among themselves. p
Let us denote by q: (x) the quark fields, where the index
A=E1;250004 Nf refers to flavor and corresponds to the observed
degrees of freedom of existing hadrons such as isotopic spin, strange-
ness, charm, bottom, etc.. At present 5 flavors are known and usually
the corresponding quarks are called: - q‘s u (up) , q2 = d (down),
q3 = 8 (strange), q4 = ¢ (charm) and q5 = b (bottom). The index
« = 1,2,.., N refers to the color degrees of freedom. Tpe ex-
perimental evidence implies that there are three colors and the
usual notation is : qlA s red, qu = blue and qu = green. As it
is usual fof thé spin % fields the Lagiangian density for massless

free quarks can be written as

, _ \
. L TZA A S ~A
ol vy = = qu 0 yF % 9, o - —"—'[?r G ] rr g

(1.1)



where a summation on A and o« must be understood. We are using
the metric g M z (1,-1,-1,-1) . When no error is possible we will
omit the flavor and/or the color indices. We will as'sume that
SU(N) 1is the color group and the quark fields transform as its
fundamental representation. The above given Lagrangian density is
clearly invariant under global gauge color transformation. Let us

-

now consider the local gauge color transformation

q: xy —s ‘i:'m: Gup 0 ‘,: > = [ e-L% Ta e“m] (1:,,‘, (1.2)

. “an
where Ga(x) are real space-time functions, g is a real dimension-
less coupling constant and T a are the generators of SU(N) in
its fundamental representation (Appendix A). Under (2) the Lagrangian
density %o(x) transforms as

4

,'(0(') > 'éa () = Dc{o >) + - E): (%) ‘r"[ Cv.*()l) 2 Gb-»]

i
2 dP‘(btx)

' = , :
- _2‘:_ Guyp[[2FcHeo) GNJ"‘? 44 iy (1:3)

In order to obtain a Lagrangian density invariant under local gauge
transformations we must substitute in (1) [YM 54] the usual deriva-

tive " by a covariant one

S92 P = & 2% - ., To. BE g
o p —_— ap = op 3 op G . (1.4)
where B: (x) are the (N2—1) so-called gluon fields. The.color

indices will be written indistinctly as upper or lower indices. The

new Lagrangian density will be invariant under local gauge trans-
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5 : ( 3 s A ;
formations if qé\x) and D__ qg(x) transform under (2) in the
o g p

same way, i.e.

r A (s A’ I A .
Dup 9p 2, Dap Gp o = G Dy g e (1.5)

where D';P denotes (4) with B} (x) substituted by the trans--
formed field B'g(x) . From the last equation we can immediatelyl
obtain that the transformed gluon fields‘can be written in terms of
the original ones as

a
as BL 0z Guato TS BL o G

X SR B o

(1.6)
~ ' ’
e s | D Gy ] Gy tx)
% ]
From (2) and (4) the transformation laws undef infinitesimal local

gauge transformations turn out to be

A 1A A o . &
QO — g 0 = 9, b0 - LﬁbTﬂ'P éeq'u) c'?, (x)
(I.7)

’

B oo — 8'F o = BY o+ g fape 86p0 BE o - 2F 80, 00

where ¢ ea(x) are the infinitesimal functions characterizing the
transformation. By this procedure we have constructed a lagrangian
density which is invariant under local gadge transformations:

i

- L oA A : k¥ -a P
o (x) = A (TR ;_[Dp’qumj”qpmz

—A ‘ i —
R Yr -k C,; S _; l'bf‘c_,:L-)J r" ti: (x)

D e

[ 28 6y A% A p ’
58 Te®® A i Jpve By e (1.8)



which describes the free massless quark fields as well as their

interaction with the gluon fields with a universal,real and dimen-

sionless coupling constant g .

Sometimes it is useful to introduce the more compact notation

BF a1 .= Ly Ta B: )

(1.9)
pt = I2F - BY oy

where now Br(x) and D! are NxN matrices and I is the corres-

ponding unit matrix. Using this notation the above given transforma-

tion laws are

q‘u\ iy q“ln = Glx)ﬁ‘(n
Dfgtta ——— D'F gt = G DY gt
(1.10)
Dk —_— p'r = Gixy Dy ¢ o
BF by — B'Tpa = G B oo 6o + [ Ge] 6y

where qA(x) is a column matrix with elements qﬁ‘(x) and G(x)
a NxN matrix with elements de(x) .

The Lagrangian density (8) does not fix the equations of
motion of the gluonic fields and therefore, without destroying the
local gauge invariance, we must add to it some terms in order to

complete our theory. Up to this end let us define the antisymmetric' .
field strength tensor FM (x)

o Gt



Fu = - [B*, p”] =
R (I.11)
= By - BY - [ Bfo, 8Vwo]
which satisfies the Bianchi identity
[pS, Frv) 4 Lo, F¥8] « [p", F8F] = o (1.12)

The components Fa”“ (x) are defined by

FFfPe = g Ta FY

Film = ¥ 8% o - 2'BF o+ 9 babe B o BY oo (I.13)
where the last term reflects the non abelian character of SU(N).
Taking into account the transformation law of DM given in (10) and

the definition (11) we get immediately

FEPo — s 'y 2 G FP o 67 o ClilA
and hence
gz
v v =
T‘. [ Fr (x) F"V lu\] = - —2 F'; o F pv (x) (1-15)

is a scalar under Poincaré transformations and furthermore it is
invariant under local gauge transformations. We can add to (8) a
term proportional to (15) and in this way we get the Lagrangian

density -
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} % N
¥z — T [Fo Fuw] + = 3%y 0 4w

Za"

T o s BRI e
2 fr 9

which describes the kinetic terms for massless quarks and massless

gluons as well as the interactions of quarks and gluons and the

gluon selfinteractions,all of them characterized by a dimensionless

coupling constant g .

As it is well known [YM 54] it is impossible to give mass to
the gluons without breaking the local gauge invariance, but mass
terms can be added for the quark fields without destroying this inva-
riance. Let us now consider the most general wdy to give masses to
the quark fields without breaking local gauge invariance. Up to this
end let us introduce the left and righthanded quark fields defined
as .

1“L1Rm = —'2: (I t fs5) 9. 0 (1.17)

o,1_2_3
where qq(x) is a column matrix with Nf rows and r5 =iy y vy ro.
.The most general mass term with the desired properties that can be

added to the Lagrangian density is
< . ° M . o ) (1.18)
w0 o= qu(ﬂ r Qag >+ ﬁag‘” Y G .

where M 1is an arbitrary Nf X Nf matrix. If det M # O ,.we can
write in a unique way M = MHU where MH is the square root of

MM* and therefore is an hermitian positive defined matrix, while *-.

-

U= MH

M is unitary. Then (18) can be written as



+ ! ¥+
(u x) = ‘10“. (x) ro My Gan O + C1'./R (x) Yo Hy Qo

where q;R. (x) = U qdk(x) . Furthermore if ﬁz;,,z Glua 0 + 9 oy %)

+ i t
€ lx) = ﬁdle)To M, [q;tx,- q,LLnJ + ﬁ;g “’TO M, lgh o - qLRLn] -

» +
xy y° M " o+ 9 W YoM, 9" =
oL Y H 1a d R o

Gooo M9 0

“

+

Since MH = MH , we can diagonalize this matrix using a unitary
matrix V
; il O
ma
+ .
VMHV - Hp = .
0 N
"""&
and introducing q:' (x) = Vg ;' (x) we can write the mass term
as
- e ni
€ ¥ = q, 0 Mp 9, ® (1.19)

If det M = 0O we can still write M = MHU where MH is the one
given above. The diagonalization of MH still determinés the real
non-negative values of the diagonal matrix MD giving the masses.
Nevertheless, the matrices U and V are not uniquely determined
by this method, unless their unitarity isexplicitly imposed.
Let us check that all terms of (16) are invariant under gq,(x)->
q:' (x) . The most general form of the terms of (16) involving quark

fields is



q-’ e ¥ Adp 9p 00

Let us prove its invariance

Gubo YK Ayp G0 0 = [ qh 00+ Gug 0]y y¥ Aup Lape 004 9 0] = .

+
Va0 TOY" Aup qpr 9+ G000 1OrF Aup Gpe ) =

+
Qe B Yo yH Aap GpL = + 9" ue O yoyF Asp ‘l’pk o

+ ” T :
Yar 0 yor* Agp [qpw - ‘l’,l 0155 yp 09 Yort Aup | 7';3 R PR

+ .
Q. O Y° Y* Aap :,"“ xy + q',:. oy Yoyt Agp 1; )

"

3% o y¥ Aap q: Xy = q'fd‘ o Y Ayp qp

Then we can forget about the prime§ and the desired Lagrangian den-
sity can be written as

24

)= —— Te [FPoo Fuuo] + %

4400 v DY g4 10

L [P gtwl] oy, ghoo - e G0 G40 (1.20)

or exp\ici\i\y

(0 = = -:’— l'br B:m -'D\,B: o ][R w - ek ]

,,.m.’:’!‘%
N




= A : -—A -
Gu o Y'P'br cl‘d ) - % ['D"th")]r" ‘1:,(;) - m, f':tx) q: (x)

N

- .
9 ‘1:"" ’\dp Y- ﬁ‘P o BE oo

~|-

] [N “
> ¢3 [abc ['Dr B, 60 - Dy Bl“ (x)J B'; %) B‘; )

- 11'_ %7. feve feae B,: = & gn BE s B g (I.21)
This is the Lagrangian of diassical ch.romodyna.mics. The first term re-
presents the kinetic term for the mass{ess gluon fields; the next
three terms correspond to the kinetic terms of the quark fields with
the possibility of a different mass for each flavbr; the fifth term
describes the interaction of thg quarks with the gluons and the last

. two terms are the self-interactions of the gluon fields due to the
non-abelian character of SU(N) . The equations of motion are, in

compact notation,
[y DF = my ] g*0 = 0

: (1.22)
I_ DY, Fr., (%) ] = =t 3" b Z E,'lu) Tz Vi c"l,)
A

We would like to consider before going on the global symme-
tries of our Lagrangian density

1) Uug(1)

The Lagrangian density (21) is invariant with respect to the
set of one parameter transformations

. -5 BI
g ——s 4 = € G069 (1.23)

=

where 68 1is a real constant and I is the unit matrix in the color
and flavor spaces. To this global gauge transformation there is as-

sociated, via Noether's theorem, a baryonic current
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5 - A A
3K o
NTH ma g B YF fa O (I.24)

where summation over ¢olor and flavor indices must be understood.
This-is a conserved gauge invariant current

O JP g = o (1.25)

and the associated charge
Bz Sa% I, %) ' (I.26)

is the baryonic charge, generator of the UB(l) group, which is a

constant of motion.
ii) Ul(l) @ Uz(l) @ isevs - ® UNf(l)

Our Lagrangian density (21) ‘is invariant with respect to

each set of uniparametric transformations

" -.'BAI N

' — e q % a2, (1.27)

where 9A are real constants and I 1is the unit matrix in the color
space. To each flavor A there is associated a global symmetry
UA(l) and therefore our Lagrangian is invariant under the group
U(1) @ U,(1) e .... ® UNf(l) . ‘The associated gauge invariant cu-

rrents are
; A=4,2...., N, (1.28)

yhere a summation over color indices must be understood. These cu-
rrents are conserved and the éorresponding charges are the generators
of the group. These symmetries correspond to the separate conservation

of each flavor in the strong interactions.



1

Notice furthermore that if m, = m, then « (x) has a glo-
bal symmetry larger than Ui(l) ® UJ(1) p.odtids iqvariant under the
group of transformations SU(2) acting on the space (qi(x) 5 qq(x)).

-

If all masses are equal the global symmetry group is SU(Nf) .
iii) SUL(Nf) ® SUR(Nf) i
Let us now consider the global transformation acting only on
the flavor indices
Joetr
e 9o x)

Gu ) —> 9y 0
(1.29)

' g eA T‘ r‘
9utxd —> 4o b = € G b0

where Q‘A is a set of (Nf2 - 1) real constants and T A are the
generators of SU(Nf) in the fundamental representatioq. These ;rans-
formations are global symmetries of bur Lagrangian density only if

the mass terms are absent: m, = 0 . Via Noether's theorem we can

associate to the transformations (29) the gauge invariant currents

(I1.30)

which are the vector and axial vector currents of the current alge-

bra of Gell-Mann [GE 64]. Notice L

P . =Y z
?rVA (xy = ;(m,-mu) 4 o 0 (TA)u 9%,

(1.31)

for /-\'; (xy = ¢ (Im’fmsg) q‘:( (x) YS (TA)YZ 5:‘ (x)
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_so that the currents are conserved if the quark masses are zero.
Assuming that qﬁ (x) 1is a quantum field we would like to
compute the equal time commutation relations of these currents. All
these currents have the general structure X(x) = q+(x) 0 q(x)
where O 1is a matrix acting on color, flavor and spin indices. Let

us remember that

. (O3]
Six°-y) § g, 0, 9; (y)} = ALJA 8 x-y) (1.32)
where the r~ubindex stands for color, flavor and spin components. Then
it 18 immediate to prove that

4
Py

sty [at 0 O ¢ o0 tiy 0 =
vy 97w 0 qu, gty 0 gl tae)

= q"’ = [o, 0] g o 8 (x -v)
In the cases'that .we are interestedin 0 =1 & A‘/Ze ", where I is
the unit matrix in the color space, r\A/Z are the gerierators of
-the’ ,SU(Nr) flavor group in its fundamental representation and I
are matrices acting on the spin indices. It is convenient to introdu-

ce

2
Ao = };r I

-

and then relations (A.6) and (A.12) can be written
¢ i )

X dnw Thass #0hanelie 5 - ®Takls= 24 (1.34)

- where the 1n"dices\ run from zero to Nf2 - 1 . Then

’ ' \‘. =



