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Preface

This book contains a selection of lectures from the first CFN Summer School on
Functional Nanostructures which took place from September 24" to September
27t 2003 in Bad Herrenalb in the Black Forest of Germany. The DFG-funded
CFN, or Center for Functional Nanostructures, was founded in July 2001 at the
Universitét Karlsruhe (TH) and the Forschungszentrum Karlsruhe. Additional
funding comes from the State of Baden-Wiirttemberg and from the home in-
stitutions, Universitdt and Forschungszentrum. The mission of the CFN is to
investigate nanoscale functional materials within the following broad research
areas:

A Nanophotonics
B Nanoelectronics
C Molecular Nanostructures
D Nanostructured Materials

The CFN is made up of a wide range of research groups from 15 different
Institutes in Karlsruhe bringing a variety of scientific backgrounds together. The
Center thus provides a melting pot where various talents can be combined to
address the problems associated with creating functional nanoscale materials.
At the same time, the members of the Center are acutely aware of the need to
develop a common language to facilitate communication amongst the various di-
sciplines, and thus the idea of holding Summer Schools to bring groups across the
four research areas together evolved. The remit of the Summer Schools is to allow
members of the CFN and external participants to exchange ideas and explain
research methods and strategies through a series of lectures designed both to
introduce unfamiliar concepts and discuss the benefits and problems associated
with various research methods including many which are highly specialised.

Chapters 1-4 of these Lecture Notes are devoted to research area A (Nano-
photonics), Chaps. 5-9 to B (Nanoelectronics) while the last two chapters give
a flavor of research areas C (Molecular Nanostructures) and D (Nanostructured
Materials).

The lecture notes we have brought together here represent a selection of the
presentations made at the Summer School in 2003 and are designed to provide
a useful starting point for those interested in learning more about this rapidly
developing area of science. It is hoped that they will not only provide a use-

ful working text, but also arouse interest in our activities in Karlsruhe within
the CFN.
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We would like to take this opportunity to thank all the authors who have
contributed to this volume for their valuable input as well as all the participants
at the Summer School for helping to make this interdisciplinary venture such a
success.

Karlsruhe, Kurt Busch
March 2004 Annie Powell
Christian Rothig
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Daniel Hermann!®, and Lasha Tkeshelashvili!

! Institut fiir Theorie der Kondensierten Materie, Universitit Karlsruhe,
76128 Karlsruhe, Germany

2 Department of Physics and School of Optics: CREOL & FPCE, University of
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3 Bogolyubov Institute for Theoretical Physics, 03143 Kiev, Ukraine

1 Introduction

The past decades have seen dramatic advances in microstructuring technology.
Today, a wide variety of structures with feature sizes ranging from a couple
of micrometers all the way down to a few tens of nanometers are routinely
fabricated with precision better than ten nanometers. In addition to these im-
provements in fabrication quality, the variety of materials that can be processed
is growing continuously. These advances in materials science are paralleled by
the development of novel and improvement of existing laser sources that allows
one to generate electromagnetic fields with previously unattainable energy den-
sities as well as temporal and spatial coherences. Bringing together advanced
microfabrication technologies with sophisticated laser systems lies at the heart
of Nano-Photonics: The control over the flow of light on length scales of the
wavelength of light itself through microstructured optical materials (“photonic
metamaterials”) with carefully designed properties.

A particularly prominent class of metamaterials are the so-called Photonic
Crystals (PCs) which consist of a microfabricated array of dielectric materials
in two or three spatial dimensions. The resulting combination of microscopic
scattering resonances from individual elements of the periodic array and Bragg
scattering from the corresponding lattice is very similar to the propagation of
electron waves in electronic crystals and, as a result, leads to the formation of
an energy bandstructure for electromagnetic waves. The most dramatic modi-
fication of the photonic dispersion relation in these systems occurs when the
photonic bandstructure of suitably engineered PCs exhibits frequency ranges
over which the light propagation is forbidden irrespective of the direction of pro-
pagation [1,2]. The corresponding subclass of PCs that exhibit such a Photonic
Band Gap (PBG) are commonly referred to as Photonic Band Gap materials
and may be regarded as a “Semiconductor for Light” [3]. In fact, this analogy
of PBG materials to electronic semiconducting materials may be reaching very
far and the current state of PBG research suggests that this field is at a stage
comparable to the early years of semiconductor technology shortly before the in-

K. Busch et al., Solid State Theory Meets Photonics: The Curious Optical Properties of Photonic
Crystals, Lect. Notes Phys. 658, 122 (2005)
http://www.springerlink.com/ © Springer-Verlag Berlin Heidelberg 2005



2 K. Busch et al.

vention of the solid state electronic transistor. If this analogy continues to hold,
one may find PBG materials at the heart of a 21%* century revolution in optical
technologies similar to the revolution in electronics we have witnessed over the
latter half of the 20" century.

In this chapter, we want to outline how the vast knowledge about electron
propagation in crystalline solids may be employed to determine the optical pro-
perties of PCs in general and of PBG materials in particular. In Sect. 2, we intro-
duce photonic bandstructure computations as the central tool for obtaining the
photonic dispersion relation, the corresponding eigenmodes (Bloch functions),
and related physical quantities such as group velocities, group velocity disper-
sion as well as total and local density of states. In Sect. 3, we discuss how the
existence of a PBG may be utilized for the design of (linear) waveguiding struc-
tures through the deliberate incorporation of defects. In addition, we outline the
qualitatively new physics that may arise in the case of nonlinear and quantum
optical phenomena in PBG materials. Finally, in Sect. 4, we discuss a novel ap-
proach to obtain a fully quantitative lattice model for PCs using the solid-state
theoretical concept of Wannier functions that allow us to efficiently carry out
accurate simulations of PC-based devices. We employ this approach to develop
novel concepts and design for functional elements based on the infiltration of
individual pores in two-dimensional PBG materials.

2 Photonic Bandstructure Computation

Photonic bandstructure computations determine the dispersion relation of infi-
nitely extended defect-free PCs. In addition, they allow us to design PCs that
exhibit PBGs and to accurately interpret measurements on PC samples. As a
consequence, photonic bandstructure calculations represent an important pre-
dictive as well as interpretative basis for PC research and, therefore, lie at the
heart of theoretical investigations of PCs. For instance, the first convincing evi-
dence for the very existence of PBGs has come from the seminal theoretical work
of the Towa State group [4], where it has been reported that certain structures
with diamond symmetry exhibit complete three-dimensional (3D) PBGs.

2.1 Photonic Bandstructure and Bloch Functions

More specifically, the goal of photonic bandstructure computations is to find the
eigenfrequencies and associated eigenmodes of the wave equation for the perfect
PC, i.e., for an infinitely extended periodic array of dielectric material. For the
simplicity of presentation, we restrict ourselves in the remainder of this chapter
to the case of TM-polarized radiation propagating in the plane of periodicity
(x,y)-plane of two-dimensional (2D) PCs. In this case, the wave equation in
the frequency domain (harmonic time dependence) for the z-component of the
electric field reads

— (82 + 82) E(r) + “c’—jE(r) = 0. (1)
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Here c denotes the vacuum speed of light and » = (z,y) denotes a two-dimen-
sional position vector. The dielectric constant €,(r) = e,(r + R) is periodic
with respect to the set R = {nia; + nqas; (ny,n2) € 22} of lattice vectors R
generated by the primitive translations a;, @ = 1, 2 that describe the structure of
the PC. Equation (1) represents a differential equation with periodic coefficients
and, therefore, its solutions obey the Bloch-Floquet theorem

Ex(r+a;) = etk B (r), (2)

where ¢ = 1,2. The wave vector k € 1st BZ that labels the solution is a vector
of the first Brillouin zone (BZ) known as the crystal momentum. As a result of
this so-called reduced zone scheme, the photonic bandstructure acquires a multi-
branch nature that is associated with the backfolding of the dispersion relation
into the 1st BZ. This introduces a discrete index n, the so-called band index,
that enumerates the distinct eigenfrequencies and eigenfunctions at the same
wave vector k [5]. Furthermore, (2) suggests that the Bloch function E,x(7) for
band n and wave vector k can be written in a form

Enk(”‘) = eikr unk(”') 3 (3)

representing a plane wave that is modulated by a lattice periodic function
nk(r) [5].

A straightforward way of solving (1) is to expand all the periodic functions
into a Fourier series over the reciprocal lattice G, thereby transforming the dif-
ferential equation into an infinite matrix eigenvalue problem, which may be sui-
tably truncated and solved numerically.

For instance, for a PC consisting of pores (radius r, dielectric constant ¢;) in
a background material (dielectric constant €,), the periodic dielectric constant
€p(r) may be written as

%Tlr)zéiajL(l_é)ZS(r—R) (4)

€p

= neer, (5)
G

where S(r — R) takes on the value one if |r| < r, and is zero elsewhere. The
Fourier coefficients ng are given by

1 ; 1 )
= d’r —— ™G, 6
e Viwse /wsc p(T) (©)

Here, we designate the volume of the Wigner-Seitz cell (WSC) by V. Similarly,
following the Bloch-Floquet theorem we expand E(r) for a given wave vector k
as

Ex(r) =) A& eiktOT, (7)
G



