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Editor’s Statement

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely to
survive change of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one comprising
a recognizable branch of present-day mathematics. Numbers of volumes
and sections ‘will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied
but where it has not yet penetrated because of insufficient information.

GIAN-CARLO ROTA



Foreword

Most modern algebra texts devote a few pages (but no more) to finite
fields. So at first it may come as a surprise to see an entire book on the
subject, and even more for it to appear in the Encyclopedia of Mathematics
and Its Applications. But the reader of this book will find that the authors
performed the very timely task of drawing together the different threads of
development that have emanated from the subject. Foremost among these
developments is the rapid growth of coding theory which already has been
treated in R. J. McEliece’s volume in this series. The present volume deals
with coding theory in the wider context of polynomial theory over finite -
fields, and also establishes the connection with linear recurring series and
shift registers.

On the pure side there is a good deal of number theory that is most
naturally expressed in terms of finite fields. Much of this—for example,
equations over finite fields and exponential sums—can serve as a paradigm
for the more general case; and the authors have gone as far in their
treatment as is reasonable, using elementary algebraic methods only. As a
result the book can also serve as an introduction to these topics.

But finite fields also have properties that are not shared with other types
of algebra; thus they (like finite Boolean algebras) are functionally com-
plete. This means that every mapping of a finite field can be expressed as a
polynomial. While the proof is not hard (it is an immediate consequence of
the Lagrange interpolation formula), practical questions arise when we try
to find polynomials effecting permutations. Such permutation polynomials -

XVvil



xviii Foreword

are useful in several contexts, and methods of obtaining them are discussed
here. True to its nature as a handbook of applications, this volume also

gives various algorithms for factorizing polynomials (over both large and
small finite fields).

The lengthy notes at the end of each chapter contain interesting historical

perspectives, and the comprehensive bibliography helps to make this volume
truly the handbook of finite fields.

P. M. ConN



Preface

The theory of finite fields is a branch of modern algebra that has come to
the fore in the last 50 years because of its diverse applications in combina-
torics, coding theory, and the mathematical study of switching circuits,
among others. The origins of the subject reach back into the 17th and 18th
century, with such eminent mathematicians as Pierre de Fermat (1601-1665),
Leonhard Euler (1707-1783), Joseph-Louis Lagrange (1736-1813), and
Adrien-Marie Legendre (1752-1833) contributing to the structure theory of
special finite fields—namely, the so-called finite prime fields. The general
theory of finite fields may be said to begin with the work of Carl Friedrich
Gauss (1777-1855) and Evariste Galois (1811-1832), but it only became of
interest for applied mathematicians in recent decades with the emergence of
discrete mathematics as a serious discipline.

In this book, which is the first one devoted entirely to finite fields, we
have aimed at presenting both the classical and the applications-oriented
aspect of the subject. Thus, in addition to what has to be considered the
essential core of the theory, the reader will find results and techniques that
are of importance mainly because of their use in applications. Because of
the vastness of the subject, limitations had to be imposed on the choice of
material. In trying to make the book as self-contained as possible, we have
refrained from discussing results or methods that belong properly to alge-
braic geometry or to the theory of algebraic function fields. Applications are
described to the extent to which this can be done without too much

Xix



XX Preface

digression. The only noteworthy prerequisite for the book is a background
in linear algebra, on the level of a first course on this topic. A rudimentary
knowledge of analysis is needed in a few passages. Prior exposure to
abstract algebra is certainly helpful, although all the necessary information
is summarized in Chapter 1.

Chapter 2 is basic for the rest of the book as it contains the general
structure theory of finite fields as well as the discussion of concepts that are
used throughout the book. Chapter 3 on the theory of polynomials and
Chapter 4 on factorization algorithms for polynomials are closely linked
and should best be studied together. A similar unit is formed by Chapters 5
and 6. Chapters 7 and 8 can be read independently of each other and
depend mostly on Chapters 2 and 3. The applications presented in Chapter
9 draw on various material in the previous chapters. Chapter 10 supple-
ments parts of Chapters 2 and 3.

Each chapter starts with a brief description of its contents, hence it
should not be necessary to give a synopsis of the book here. As this volume
is part of an encyclopedic series, we have attempted to provide as much
information as possible in a limited space, which meant, in particular, the
omission of a few cumbersome proofs. Bibliographical references have been
relegated to the notes at the end of each chapter so as not to clutter the
main text. These notes also provide the researcher in the field with a survey
of the literature and a summary of further results. The bibliography at the
end of the volume collects all the references given in the notes.

In order to enhance the attractiveness of this monograph as a
textbook, we have inserted worked-out examples at appropriate points in
the text and included lists of exercises for Chapters 1-9. These exercises
range from routine problems to alternative proofs of key theorems, but
contain also material going beyond what is covered in the text.

With regard to cross-references, we have numbered all items in the
main text consecutively by chapters, regardless of whether they are defini-
tions, theorems, examples, and so on. Thus, “Definition 2.41” refers to item
41 in Chapter 2 (which happens to be a definition) and “Remark 6.28”
refers to item 28 in Chapter 6 (which happens to be a remark). In the same
vein, “Exercise 5.31” refers to the list of exercises in Chapter 5.

It is with great pleasure that we express our gratitude to Professor
Gian-Carlo Rota for inviting us to write this book and for his patience in
waiting for the result of our effort. We gratefully acknowledge the help of
Mrs. Melanie Barton, who typed the manuscript with great care and
efficiency. The staff of Addison-Wesley deserves our thanks for its profes-
sionalism in the production of the book.

R. LipL
H. NIEDERREITER
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Chapter 1

Algebraic Foundations

This introductory chapter contains a survey of some basic algebraic con-
cepts that will be employed throughout the book. Elementary algebra uses
the operations of arithmetic such as addition and multiplication, but
replaces particular numbers by symbols and thereby obtains formulas
that, by substitution, provide solutions to specific numerical problems. In
modern algebra the level of abstraction is raised further: instead of dealing
with the familiar operations on real numbers, one treats general operations
—processes of combining two or more elements to yield another element—in
general sets. The aim is to study the common properties of all systems
consisting of sets on which are defined a fixed number of operations
interrelated in some definite way—for instance, sets with two binary
operations behaving like + and - for the real numbers.

Only the most fundamental definitions and properties of algebraic
systems—that is, of sets together with one or more operations on the
set—will be introduced, and the theory will be discussed only to the extent .
needed for our special purposes in the study of finite fields later on. We
state some standard results without proof. With regard to sets we adopt the
naive standpoint. We use the following sets of numbers: the set N of natural
numbers, the set Z of integers, the set Q@ of rational numbers, the set R of
real numbers, and the set C of complex numbers.



2 Algebraic Foundations

1. GROUPS

In the set of all integers the two operations addition and multiplication are
well known. We can generalize the concept of operation to arbitrary sets.
Let S be a set and let S X S denote the set of all ordered pairs (s, t) with
s€ S, r€S. Then a mapping from S X S into S will be called a (binary)
operation on S. Under this definition we require that the image of (s,7) €
S X S must be in S; this is the closure property of an operation. By an
algebraic structure or algebraic system we mean a set S together with one or
more operations on S.

In elementary arithmetic we are provided with two operations,
addition and multiplication, that have associativity as one of their most
important properties. Of the various possible algebraic systems having a
single associative operation, the type known as a group has been by far the
most extensively studied and developed. The theory of groups is one of the
oldest parts of abstract algebra as well as one particularly rich in applica-
tions.

1.1. Definition. A group is a set G together with a binary operation * on
G such that the following three properties hold:

1. = is associative; that is, for any a, b, c € G,
ax(b*xc)=(axb)*c.

2. There is an identity (or unity) element e in G such that for all
acsqG,
axe=e*a=a.
3. For each a € G, there exists an inverse element a~' € G such that

a*a '=a '*a=e.
If the group also satisfies ’

4. Foralla,beG,
a*b=b=*a,
then the group is called abelian (or commutative).

It is easily shown that the identity element e and the inverse element
a”! of a given element a € G are uniquely determined by the properties
above. Furthermore, (a*b) '=b""*a" ' for all a,b € G. For simplicity,
we shall frequently use the notation of ordinary multiplication to designate
the operation in the group, writing simply ab instead of a * b. But it must be
emphasized that by doing so we do not assume that the operation actually is
ordinary multiplication. Sometimes it is also convenient to write a + b
instead of a * b and — a instead of a~', but this additive notation is usually
reserved for abelian groups.



