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Abstract

The aim of the paper is to introduce the reader to various forms of the max-
imum principle, starting from its classical formulation up to generalizations of the
Omori-Yau maximum principle at infinity recently obtained by the authors. Appli-
cations are given to a number of geometrical problems in the setting of complete
Riemannian manifolds, under assumptions either on the curvature or on the volume
growth of geodesic balls.
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0. Introduction

The classical maximum principle in an invaluable tool in the study of the qual-
itative behavior of solutions of PDE’s on domains of R™ or on R" itself. Due to
its local nature, it can be successfully applied on general Riemannian manifolds,
to investigate equations of geometrical interests such as, for instance, the Yamabe
equation, or the assigned mean curvature equation.

However, precisely because of its local nature, the maximum principle in not
sensitive to the specific geometric properties of the manifold M. More than thirty
years ago, H. Omori, studying immersions of minimal submanifolds into cones of
R™, introduced a global version of the maximum principle, which has its roots in
the following simple observation: if u : R — R is bounded above and we denote
u* = sup u, then there exists a sequence {z;} C R such that u(zy) — u*, v/ (zx) — 0
and u''(zx) < 1/k, for every k. We refer to Section 1 below for a detailed discus-
sion. Omori established a version of this principle on a Riemannian manifold with
sectional curvature is bounded from below, and, perhaps more importantly, he also
provided examples of manifolds where his global form of the maximum principle
fails.

This new idea was taken up by S.T. Yau who, in a series of papers (some
in collaboration with S.Y. Cheng), refined the principle for the Laplace-Beltrami
operator, and applied it to find elegant solutions to a series of geometric problems,
most notably, the Schwarz lemma for holomorphic maps between Kéhler manifolds,
that had eluded the efforts of many geometers for quite a few years.

This new maximum principle, which we will call henceforth the ”Omori-Yau
maximum principle”, opened the way to a number of problems, which we may
broadly collect into three categories.

1. Find a sharp form of the the maximum principle in relation with the
geometry of the manifold;

2. Extend the maximum principle to differential operators other than the
Laplacian;

3. Introduce some relaxed form of the maximum principle.

It turns out that the really challenging tasks are those described in the second
and third point. Indeed, as far as the second point is concerned, we note that Yau’s
proof makes an essential use of the structural properties of the Laplacian, and it
cannot carried out for instance, in the case of the mean curvature operator. Thus
a genuinely new approach is needed.

As for the third point, the need for a relaxed form of the principle is suggested by
a number of different geometrical problems in which the property that |Vu(zg)| — 0
plays no essential role.
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The possibly unexpected fact is that this last requirement gives the link with
curvature. It follows that, if we are not interested in a conclusion involving |Vu/|, we
should be able to relax the geometrical assumptions. This turns out to be the case,
and, quite surprisingly, in the case of the Laplace-Beltrami operator, the validity
of this new form of the maximum principle - we shall call it “the weak maximum
principle” - is equivalent to the stochastic completeness of the manifold. It should
be pointed out that L. Karp has obtained in [Ka] some results in this direction.

The aim of this paper is to present some of the evolution of the maximum prin-
ciple, justifying its “raison d’etre” with applications to a few geometrical problems.
At the same time we improve on known results, and we explore new interesting
phenomena.

The paper is organized into six chapters as follows:

1.

N

7.

Preliminaries and Some Geometrical Motivations.

Further Typical Applications of Yau’s Technique.

Stochastic Completeness and the Weak Maximum Principle.
The Weak Maximum Principle for the ¢-Laplacian.
(p-parabolicity and Some Further Results.

Curvature and The Maximum Principle for the p-Laplacian.

Each chapter begins with a few introductory observations to guide the reader
to the core of the matter keeping the exposition basically self contained. Only
occasionally, we refer the reader to the original papers for further details. The
paper ends with a rich, but by no means exhaustive, bibliography.
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CHAPTER 1

Preliminaries and some geometric motivations

Let u : [a,b] — R be a continuous function. Then u takes its maximum u* at
some point xg € [a,b]. If g € (a,b) and u has continuous second derivative near
To then

(11) (i) u'(zo) =0 and (ii) u"(=o) <O.
It follows easily that, if u satisfies a differential inequality of the type
(1.2) v’ + g(z)u’ >0 on (a,b),

where g is any bounded function, then either zo = a or g = b. Note, however,
that for the non-strict inequality

(1.3) v’ 4+ g(x)u’ >0 on (a,b)

the constant solutions u = c¢ is admitted and for such a solution the maximum is
attained at any point of [a,b]. The content of the usual maximum principle is the
fact that this exception is the only possible. The argument to prove this is a tricky
way to pass from inequality (1.3) to inequality (1.2) for a new function v properly
related to u. Then one concludes with the aid of the previous discussion. Thus,
the core of the maximum principle indeed relies on u(zg) = u* and (1.1) 1), ii).
Substituting [a,b] C R with a compact Riemannian manifold (M, <, >) without
boundary, we have that, given any u € C%(M), there exists 2o € M such that

(1.4) () u* = u(wo); (i) [Vu(zo) =0, (iii) Au(zo) <0

where we have chosen to generalize (1.1) ii) with Au(zg) < 0; clearly we could have
equally well considered as plausible (stronger) generalization, the following

(1.5) (i) u* =u(zo); (i) [Vu(mo)|=0; (iii) Hess(u)(zo) < 0,
where the third condition has to be interpreted in the sense of quadratic form that
is

Hess(u)(zo)(X,X) <0, VX €Ty M.
Following S.T. Yau, from now on, we shall call “the usual maximum principle”
(equivalently, “the finite maximum principle”) the validity of either (1.4) or (1.5).
Here are two examples of their use.

First ezample. Let f : M — R™*! be an immersed hypersurface and identify T, M,
for p € M, with f.T,M viewed as an affine subspace of R™*! passing through f(p).
Set
—_ mpm+1l
W =R \UPEM T, M.

THEOREM 1.1. Let f : M — R™*! be an oriented, minimally immersed hyper-
surface. If W is open and non-empty then f is totally geodesic, that is, f(M) is a
part of a hyperplane of R™+1!,
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PROOF. We fix a point o € W as the origin of R™*!. For each p € M, let
v(p) be the unit normal to f(M) at f(p) such that {f(p),v(p)) > 0. This gives an
orientation to M, indeed, the component of the position vector f perpendicular to
M defines a never zero, normal, vector field on M, such that the support function
u = (f(p),v(p)) is positive on M. We shall compute Au. To this end, we choose an
oriented Darboux frame along f, (ey,...,em,V), so that the e; s, i = 1,...,m, are
tangent to M, give its orientation and (e, ..., €., ) gives the canonical orientation
of R™*!. Thus, in standard moving frame notations,

du = (df,v) + (f,dv) = ({e;, V) — hpi {f, ex)) 6" = u;6"

where 6*(e;) = 6; and hg; are the coefficients of the second fundamental form of f.
Hence, setting 6! for the connection forms of (M, (,)), we have

uijﬁj =du; — utOf = <d€i, I/> + <6i, dl/> — h; <df, €k> — h; (f, d6k> +
— (f, ex) dhr; — u.6}
= — (hji + uhkjhki + <f, 6k> hkij) 67,

It follows that, indicating with |IT |2 the square of the length of the second funda-
mental form of f,

Au= —u|II)? = hy; — (f, ex) hrii.
However, minimality of f yields h;; = hiy; = 0 so that we finally obtain
(1.6) Au+|I1°u=0, on M

showing that u > 0 is super-harmonic on M. Let u, = infy; u. If u, is attained
at some point zo € M then from the usual maximum principle v is constant,
u = ux = u(zp) > 0. From (1.6) we then have II = 0 and f is totally geodesic.
Therefore the proof will be complete if we show the existence of zy such that
ux = u(xg). Towards this aim, we consider a sequence {zy} C M such that
u(zr) — usx as k — +o00. To each xx we associate y, given by the intersection
of T, M with the line perpendicular to such space and passing through o. Since
llyx — ol|gm+1 = u(xg) is bounded, there exists a subsequence, which again we call
{yr}, such that yr — yg for some yy € R™t!. Since UpeM T,M is closed and
{ye} € Upers TpM we deduce yo € Ty, M for some xy € M. Thus,

up = lm u(zg) = lim flye —ollgm+s = [0 — ollgm+r = u(wo)
as needed. (]

REMARK 1.2. If m = dim M = 2 the theorem holds in the only assumptions
that (M, (,)) is complete and W # 0. Indeed, using Gauss equations and minimality
of f we have |IT |2 = —2K, where K is the Gaussian curvature of M, and therefore
u is a positive solution of

Au—2Ku=0, on M.

Using a highly non-trivial result of Fisher-Colbrie and Schoen, [FCS, Corollary 4],
we can conclude that I] = 0.

REMARK 1.3. Theorem 1.1 has been proved in [AF]. The case m = 2 is older
and due to [HK].
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Second example. A theorem of Tompkins, later extended by Chern and Kuiper,
asserts that a compact, flat, n-dimensional Riemannian manifold cannot be isomet-
rically immersed in the standard (2n—1)-dimensional Euclidean space (R*"~*, can)
(See Corollary 1.24 and Theorem 1.15 for the Tompkins-Chern-Kuiper theorem and
its generalization to the non-compact setting). Here, we outline the proof of the
following conformal version of Tompkins result due to Moore, [Mo3].

THEOREM 1.4. A flat, n-dimensional, compact, Riemannian manifold cannot
be conformally immersed in R*"—2.

PRroOOF. By contradiction, suppose we are given a conformal immersion f :
M — R™ 1, where (M, (,),,) is a flat, compact Riemannian manifold of dimension
dimM = n and m = 2n — 1. Since R™~! is conformally diffeomorphic to the
punctured standard sphere ™!\ {point} C R™ endowed with its canonical metric
cangm-1, then we can consider f as a conformal immersion f : M — S™~1,

The Euclidean space R™, hence S™ !, imbeds isometrically in the Lorentz
space L™*1. This latter is nothing but the vector space R™*! equipped with the
inner product of signature (1,m) given by

m
<’U,UJ>Lm+1 = E VjW; — Um4+1Wm+1
Jj=1

for each v = (v1,...,Vm41) , W = (Wi, .oy Winp1) € L™TL Tt is easily seen that the
map
j:R™ L™ such that j(z) = (z,1)
realises the isometric imbedding mentioned above. As a matter of facts, we have
(G (2),7())pmsr =0, VzeS™ T CR™

and hence j sends isometrically the sphere S™~! into (a hypersurface of) the upper
m-dimensional light cone V7* C Lt

Vi = {v c LM+, (V, V) pms1 = 0 and vy g1 > 0} .

We recall that, if we define the lower light cone V™ in the obvious way, then a vector
v € L™ is said to be light-like if v € Vi time-like if v lies “strictly inside” V7,
that is, (v, V) m+1 < 0; space-like otherwise.

Moreover, if v € L™*! is either light-like or time-like then v is future pointing
(resp. past pointing) if it lies “inside” V7 (resp. V™).

We now turn to the proof of Theorem 1.4. Starting from the conformal immer-
sion f: M — S™! we can construct an isometric immersion g: M — L™ with
g(M) C VT as follows. Set 0 < A € C* (M) for the conformality factor induced
by f, that is, f*cangm-1 = A?(,),, and define

g(m):w, T € M.

A(z)
The fact that g is isometric enable us to consider its (Lorentzian) second funda-
mental form 11, = Vdg : T,M x T,M — (TpM)J' C L™*! for each p € M. Since,
by assumptions, (M, (,),,) is flat (the Lorentzian version of) the Gauss equations
yield, for each p € M and for each X,Y,Z, W € T, M,

(TL(X,Y), IL(Z, W)}y mss — TIp(X, W), I1(Z,Y)) sz = 0.
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According to a definition of Moore, [Mol], this means that I, is a flat bilinear
form with respect to the Lorentz inner product (,)pm+1. We can therefore apply
the machinery of flat bilinear forms (see [Mol] and [Mo2]). Since m = 2n —2, i.e.
dim T, M > dim (TpM)L, using also that g(M) C V7, we can find an orthonormal

basis {e1(p), ..., en(p)} of T, M and a future pointing light-like vector e(p) € (TpM)J'
such that

(11, (ei(p), e;(p))] = [ A(()p) B(()p) }

where A(p) and B(p) are square vector valued matrices of order (m —n — 1) and
(2n — (m — 1)), respectively; furthermore B satisfies

* . . 0

0 . . e(p
Observe that, having fixed any future pointing time-like vector v € L™%1, it holds
(v,e(p))Lm+1 < 0. Therefore, for each p € M, the real-valued, bilinear form
(IIp, V) ms1 : TpM x T,M — R possesses the negative eigenvalue (v, e(p))pm+1 -
Now, consider the height function in the direction v

h={(g,0)pms : M = R.

Since M is compact, h attains its absolute minimum at some p € M. Standard
computations show that

Hess (h) (p) = (Vd(g,v)pm+1) (P) = (Vdg, V) m+1 (P) = <I1157v>]Lm+1 )
and, applying the usual maximum principle (for the Hessian), we deduce that

(II,;,v)]Lm+1 is positive semi-definite. But this contradicts the existence of the
negative eigenvalue (v, (p))pm+1, found above, and finishes the proof. O

REMARK 1.5. Dimensionwise the theorem is a best possible result since the
n-dimensional Clifford torus is conformally imbedded in R2*~1,

REMARK 1.6. It has been noticed that the work of Elie Cartan on the classifica-
tion of conformally deformable Euclidean hypersurfaces suggests that many results
on isometric immersions might extend to the conformal realm once dimensions are
adjusted and the other assumptions are replaced with the conformal counterparts.
This feeling is confirmed e.g. in [dCD], [DT] and Theorem 1.4 is no exception.
Holding this line, in view of the extension of Tompkins theorem to complete mani-
folds one could try to extend Moore’s result accordingly.

Clearly, it is not always possible, given u € C?(M) with u* < 4oo to find
Zo € M such that u(zg) = u*. Nevertheless, given for instance u : R — R with
u* < +o0, it is a simple matter to realize the existence of a sequence {zx} C R
with the following properties:
i) u(zg) > u* — %; i) |u'(zx)| < -]1;; iii) v’ (zx) < %
for each k € N. More generally, given v : R — R, u* < +00, there exists {zx} C R™
such that

(1.7) 1) u(zg) > u* — %; i) |Vu(zk)| < %; i) Au(zg) <

x| =
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for each k € N. Here is an elementary proof in the spirit above. Its main idea
consists in considering a family of functions each of which attains a maximum at
some point of M goes back to Ahlfors, [A], and will be repeatedly applied in the
sequel.
We fix a sequence {e;} \, 07 and we set
ui(x) = u(z) — |z|° ;.
Clearly, u; takes its (absolute) maximum at some point z; € R™ where
Aui(z;) <0 and |Vu(z;)| = 0.
Since in R™, A |z|® = 2m we obtain
(1.8) i) Au(z;) < 2me; and ii) Vu(z;) = 2¢;2;.
On the other hand,
w(@:) — & |zi|* = us(@s) > u;(0) = u(0)

and therefore
& |zi|® < u(z;) — u(0) <u* —u(0) < C
for some constant C' > 0. It follows that

|z;| <

C
=
From (1.8) ii) we then deduce

[Vu(z;)| < C\/E;.
To conclude we fix 7 > 0 arbitrarily. Then, there exists y € R™ such that

u(y) > u* — .
We have
(@) = u(@s) — & ll* > wi(y) = u(y) — eyl
>ut—n—eilyl’,

that is,
(1.9) u(z:) 2w —n—ely.
Next, we fix k € N and n = 1/(2k) and we choose i = 7 sufficiently large that

1 1 1
(1.10) e o OVE<z, me<y.

Correspondingly to this choice we set
T = T3.

It is immediate to see that the sequence {zx} constructed in this way satisfies (1.7).

In the previous proof there are two important facts that need to be stressed.
The first is the equality
Alz)* =2m
which is tightly related to the geometry of R™, and the second is the linearity of the
Laplace-Beltrami operator for which we have been able to perform the following

computation
Au; = Au — g, A |alc|2 ;
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Thus, for instance, the above technique certainly cannot be applied to the mean
curvature operator. Furthermore, we observe that, given u as above, we can always
find a sequence {z} in R™ such that (1.7) i), ii) hold true. This is a general fact
that can be easily proved.

PROPOSITION 1.7. Let (M, (,)) be a Riemannian manifold and let u € C*(M)
be such that u* < 4oo. Given ¢ > 0, let y € M satisfy u(y) > u* — & and
suppose that the closed ball B.(y) is compact. Then, there exists x € B.(y) with
the properties

(1.11) i) u(zr) > u(y) and ii) |[Vu(z)| <e.

PROOF. Let v be the maximal integral curve of Vu such that y(0) = y, defined
fora <t<b a<0<b, andlet 3=sup{t <b: v([0,t)) C Be(y)}. By the general
theory of continuation of solutions of ODEs (see, e.g., [Bo, Lemma 5.1 page 138]),
~ can be continued until it lies in the compact set B.(y), and we deduce that either
B < 400 and then () € 0B.(y), or 8 = b = +oco and 7 lies entirely in Bc(y). Let
7 = min{1, 3}, so that ([0, 7]) € Be(y). We claim that there exists ¢ < 7 such that
|Vu(y())| < e. Since 7 is an integral curve of Vu, clearly u(y(t)) > u(v(0)) = u(y).

To prove the claim, assume by contradiction that |Vu| > € on ([0, 7]). Since
4(t) = Vu(y(t)), and |[Vu| > € in B.(y), denoting by 1(7‘[0,71) the length of the arc

7’[0,7]’ we have

1] i0.0) = /OT [Vu(y(t))| dt > max{er,d(v(0),v(7))} > €.

Also,

D u(8)) = (Tu(r(0)),3(6)) = IVulrH )
whence
(112) o) - ul) = [ IVaO@I 1> dr] ) = €

and therefore u(y) < u(y(r)) — €2 < u* — €2, contradicting the assumption that
u(y) > u* — €2 O

REMARK 1.8. Some request on B.(y) have to be considered as suggested by
the following example. Let M = R?\ {0} with its canonical metric. We consider
u(z) = u(|z]) = e71®l. Then u € C®°(M), u* =1 = lim;_ou(z). On the other
hand, |Vu(z)| = e71®l — 1 as |z| — 0.

Of course it is possible to reformulate (1.7) on a Riemannian manifold (M, (,))
and, as we have just seen, if the manifold is, for instance, complete, we can always
find a sequence {x,} C M satisfying (1.7) i), ii). The next example shows that in
general there might be no sequences satisfying all the three conditions in (1.7) at
the same time, and points to the fact that some geometrical conditions need to be
imposed in order to obtain validity of the whole (1.7).

Let (M, {,)) be R? with the metric, in polar coordinates,
(1.13) (,) = dr® + g(r)*d6?
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with d6? the standard metric of S*, g € C*([0, +00)), g(r) > 0 for r > 0 and

_ r on0<r<i1
g(r) = r(logr) T er*loen)™ o p 5 3

for some positive constant p. We note that the behavior of g near 0 guarantees
that (1.13) can be smoothly defined on all of R?. Obviously (,) is complete. We
define

r(z) s
u(z) = u(r(z)) +/O g(s)‘l/0 g(t)dt ds.

Then, u € C*(M), Au=1on M, and, since y > 0, u* < +oo. In this case property
(1.7) iii) cannot hold. Note that in this example the Gaussian curvature K and the
volume growth of the geodesic ball B, have the following asymptotic behavior,

"

K(r)= _g?( ~ =2 (log )™ asr o oo

for some constant ¢ > 0, and

vol(B,) ~ %erz(logr)lﬂ as r — +00.

The following result is a generalization of Cheng and Yau, [CY], [Y1].

THEOREM 1.9. Let (M, (,)) be a Riemannian manifold and assume that there
exists a non-negative C? function v satisfying the following requirements

(1.14) Y(r) = 400 asz — 00

(1.15) JA > 0 such that |Vy| < AyY? off a compact set
(1.16) 3B > 0 such that Ay < ByY2G(yY*)Y2 off a compact set
where G is a smooth function on [0,+00) satisfying

(1.17) i) G(0) >0 it) G'(t) >0 on [0,+00)

i) G(t)~Y/? ¢ L' (4+00) ) lim SUD;, 1oo %ﬁ < +o00.

Then, given any function u € C*(M) with u* = sup,,u < +oo, there ezists a
sequence {x,}, C M with the properties

1 1
(1.18) 1) u(zg) > u* — 7 i) |Vu(z)| < 7
for each k € N. If, instead of (1.16) we assume that
(1.19) 3B > 0 such that Hess(y) < ByY2G(vY/?)Y2 () off a compact set

in the sense of quadratic forms, we can strengthen conclusion (1.18) i) to

iti) Au(zy) <

|

Hess(u)(zg) < % )

We recall that condition (1.14) means that for each 7 > 0 there is a compact
set K = K(n) C M such that y(z) > n whenever z ¢ K.

DEFINITION 1.10. We say that the Omori-Yau maximum principle holds on
(M, (,)) if the conclusion (1.18) of the Theorem is valid. In the case where the
stronger statement concerning the Hessian is satisfied, we say that the Omori-Yau
maximum principle for the Hessian holds on (M, (,)).



8 1. PRELIMINARIES AND SOME GEOMETRIC MOTIVATIONS

PROOF. We define the function
o(t) = eJo G(s)7 /2ds
and note that o(t) is well defined, smooth, positive and it satisfies
(1.20) o(t) = 400 ast— +oo.
We record, for future use, that
¢'(t) = G(t) (), #"(t) < Gt e(t)

and therefore,

OIS0
(1.21) ()~ 2°

and, using assumption (1.17) iv),

(1.22) LAQIP (1&0(1&1/2))_1/2

for some constant ¢ > 0. Next, we fix a point p € M and, Vk € N, we define
u(z) —u(p) +1
p(y(z))1/*

Then fir(p) = 1/p(y(p))*/* > 0. Moreover, since u* < 400 and p(y(z)) — +oo
as £ — oo, we have limsup,_, fi(z) < 0. Thus, fix attains a positive absolute
maximum at xr € M. Iterating this procedure, we produce a sequence {zr}. We
begin by showing that

(1.23) fi(@) =

(1.24) lim sup u(zy) = u™.
k—+oc0

To prove the claim assume by contradiction that there exists £ € M such that
u(Z) > u(zg) + 0
for some § > 0 and for each k > ko sufficiently large. If v(zy) — +o00 as k — 400,
on a subsequence, for each k such that y(zx) > v(£) we have
w(®@) —u(p)+1 _ ulzg) —ulp)+1+46
p(y(&))1/* p(y(zx))/*

contradicting the definition of zy. If {zx} lies in a compact set, then up to passing
to a subsequence, {z;} — Z so that

u(2) > u(x) + 6.

fi(&) = > fr(zk)

On the other hand, since fi(zx) > fx(Z) for every k, we deduce that
u(®) — u(p) +1 = lim fi(zx) > lim ful@) = u(@) ~ u(p) +1,
showing that
u(T) = u(#),

a contradiction. This proves (1.24) and, by passing to a subsequence if necessary,
we may assume that

(1.25) kEToo u(zg) = u*.



