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Scope of the Symposium Euromech 280

Euromech 280 provides an opportunity for discussions of the problems raised by the analysis and
identification of nonlinear mechanical systems. Indeed, the origin of nonlinearities in the field of
mechanical engineering are numerous:

— Large deflections of beams and plates;

— Plastic and viscoplastic behaviour of materials;

— Dry friction and gaps at the interfaces;

— Inertial nonlinearities and gyroscopic effects;

— Impact phenomena.
The introduction of nonlinear terms in the equilibrium equations induces complicated dynamic
behaviour even in the case of low degrees-of-freedom systems:

— Subharmonic and superharmonic responses;

— Internal resonance occurrence;

— Nonlinear instabilities;

— Chaotic behaviour.
When the origin of the nonlinearities is not clearly known, the experimental identification of
mechanical systems needs non-parametric modelling:

— Pseudo force methods;

— Equivalent linearization procedures;

— Volterra and Wiener series;

— Chronological series NARMAX, ...);

— Multi-frequency transfer functions.
When the origin of the nonlinearities are well-known the analysis of the dynamic behaviour of the
mechanical systems is linked to the identification of parameters obtained from dynamic tests. This
strategy often leads to an inverse problem in order to determine the parameters of interface and
material behaviour from dynamic structural responses.

So the main topics in these proceedings are:
A. Non-parametric modelling

— Detection of nonlinearities of mechanical systems from the analysis of dynamic responses.

— Extension of the modal synthesis to the nonlinear case.

— Non-parametric models in the time domain and the frequency domain.

— Modelling of nonlinear systems based on the pseudo force method and linearization procedu-

res.

Vi



B. Parametric modelling
— Identification of physical parameters from transient and stationary responses.
— Dynamic behaviour of mechanical systems with friction.
— Stability of self-excited systems.
— Identification of nonlinear model from impact tests.

L.Jezequel & C.-H.Lamarque
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Influence of nonlinearities on modal tests

D.J.Ewins

Imperial College of Science, Technology & Medicine, London, UK

1 INTRODUCTION

There are a number of different strategies which can
be adopted by the experimental structural dynamicist
when confronted by non-linear behaviour of a test
structure. One approach is to address the non-linear
effects directly, and to seek a detailed mathematical
description of their behaviour. This is effectively the
only course when the non-linearity is 'strong'.
Alternatively, one can ignore the warning signs of
nonlinear behaviour altogether and to carry on with
the tests regardless. This is, perhaps, imprudent and,
anyway, is unnecessary today. Between these two
extremes, there is a third approach that seeks to use
‘standard’ or near-standard modal testing techniques
in such a way as to extract as useful a model of the
structure as is possible in the circumstances of its
non-linear behaviour. This approach - which is the
basis of this paper - is often applicable in cases of
weak non-linearities, such as are observed in many
practical engineering structures. Thus, this paper will
address two specific questions, namely:

- what happens when "standard" modal testing
measurement and analysis methods are used on a
slightly non-linear structure? and - what can be done
with "standard" (or near-standard) modal analysis
methods to cope with, even identify, slightly non-
linear structures?

The paper will not address the special methods (ie
non standard 'modal’ test procedures) which have
been developed recently to study non-linear
structures, and especially those with strongly non-
linearities, in more detail (Hilbert Transforms;
Higher-order FRFs; Volterra series;...).

Between them, these approaches represent two
fundamentally different strategies for dealing with
non-linearity: (a) "learning to live" in a world with
non-linearities when using conventional modal
testing methods, without being unduly misled by the
effects; or (b) needing to identify and model such
effects in detail in order to make a full analysis of the
behaviour. At the same time as the first approach is
inadequate for the aspirations of the second, so also

is it inappropriate to use the much more complicated,
and costly, advanced techniques in (ii) for
applications where detailed description of the non-
linear effects are not required.

It must be acknowledged that once a non-linearity
comes into play in the dynamic behaviour of a
structure, then that structure ceases to possess normal
modes of vibration as we usually define them. This
need not deter us from using modal testing and
analysis techniques, provided we are sensitive to the
scope and lirnitations of our methodology and
realistic in our expectations for the results we obtain.
There are a number of results we can realistically
seek from the application of conventional modal
testing techniques to structures with some non-
linearity, and these include:

- detection of non-linear behaviour;

- indication of non-linearity type;

- indication of location of non-linearity(ies); all of
which might help to eliminate avoidable non-
linearities (loose components, joints etc.) prior to
conducting a full modal test. In addition,

- identification of the modes of the linear part of the
structure;

- identification of the modes of a linearization of the
test structure;

- representation of the actual response characteristics
of the structure, even if these cannot effectively be
described in conventional modal terms.

It is clear that these goals fall into the first of the two
strategies above, being relatively unconcerned with
the non-linearity itself and it is this area which will be
the focus of attention in this paper.

2 SOURCES OF NON-LINEARITY

It is appropriate to begin with a brief summary of the
sources of non-linearity encountered in modal testing
and, in particular, in tests which do not set out
expressly and consciously to study and analyse non-
linearity. It is assumed throughout that the types of
non-linearity of interest in this context are generally
"weak" non-linearities, referring to a degree of



Figure 1. Basis of various non-linear effects encountered in modal tests
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Figure 2. Time histories of non-linear system response to sinusoidal excitations

departure from linearity which is slight to modest.. It
is unlikely that a strongly non-linear structure would
be subject to a standard modal test.

Some typical features of real structures which give
rise to this level of non-linearity include the
following, some of which are illustrated by F-x, or
F-v characteristics in Fig. 1:

(i) amplitude-dependent stiffness, such as is caused
by tension effects in addition to bending (i.e. a

hardening stiffness) or a loss of rigidity due to
opening of joints;

(ii) dry friction-related damping;

(iii) bilinear stiffness: different stiffnesses in tension
and compression loading d irections;

(iv) backlash, and other forms of small-gap
clearances in structural joints; (v) non-linear

damping, e.g. (velocity)(Z) - dependent.



3 MODAL TEST MEASUREMENTS ON NON-
LINEAR STRUCTURES

There are two steps in a modal test which are of
interest to us here: (i) measurement of the response
functions which form the basis of the test, and (ii)
analysis of these functions to extract the structure's
modal parameters. We shall consider the first of these
in this section.

Most modal tests use measurements of FRF data,
obtained using sinusoidal, periodic, transient,
random or burst excitation signals. For linear
systems, all of these excitations are theoretically
capable of yielding the same FRF properties, but in
practice are subject to certain limitations in the means
used to measure and analyse the signals with
conventional signal processing instrumentation. For
non-linear systems, however, the different excitation
signals do not yield identical response functions,
each reacting differently to the complex
characteristics of the system under test. Inevitably,
therefore, different modal models will be derived
following different test procedures - a not-unknown,
but relatively unsatisfactory state of affairs.

Arguably the best choice of excitation signal to
investigate this characteristic of nonlinear structures
is the sinusoidal (or 'harmonic') excitation. It is
known, both from theoretical analysis and practical
experience, that a sinusoidal excitation generally
produces a periodic response. Although there are
situations where the response is not periodic but,
instead, is chaotic, the response is heavily influenced
in most cases by the frequency component at the
excitation frequency, with components at multiples or
fractions of this frequency also present - occasionally
as significant components. Fig. 2 shows some
illustrations of responses to harmonic forces. It is
convenient to extract the fundamental component of
the response and to relate it to the excitation level to
yield the (first-order) frequency response function.

This FRF is just what is measured by a true
sinusoidal excitation test, such as provided by a
Frequency Response Analyser, and is closely related
to the corresponding quantity yielded by an harmonic
balance theoretical analysis. Some examples of FRF
data obtained by both routes (experimental and
theoretical) are illustrated in Fig. 3, using modulus-
frequency (Bode) and modulus-phase (Nyquist) plot
formats. The nonlinearity is most clearly evident in
the different curves produced by different levels of
excitation: the distortion in any one curve (by
comparison with the shape expected for a linear
system) is less unambiguously an indication of non-
linear behaviour unless it is known that each
'resonance’ region harbours only a single mode of
vibration.

An important feature of all tests on non-linear
systems is the need to record not only the
response/excitation ratio but also the individual

levels. Indeed, it may well be necessary to control
these levels directly. In the case of sinusoidal
excitation, if the exciration level is kept at a constant
amplitude then the response level will vary as the
excitation frequency passes through a resonant region
and, as a result, any amplitude-dependent properties
(stiffness and/or damping) will vary, thereby
activating the non-linear effects we have described.
Constant-excitation (level) tests therefore will bring
out non-linear effects clearly.

On the other hand, if the excitation is adjusted such
that the response level is constant at every frequency
of measurement (around a resonance), then the
behaviour of the structure will have been linearised
since the various amplitude-dependent physical
parameters will have been constrained to exhibit
constant values in that region. It must be noted here
that in the case of a practical (multi-degree of
freedom) structure it is only feasible to control the
amplitude of vibration at one point. The inevitable
possibility of varying amplitudes at other points on
the structure means that an exact linearisation is not
necessarily attained in this way, although for a
narrow frequency band around one resonance it is
likely to be a good approximation.

The FRF data shown in Figs. 4 (a) and (b) were
obtained for different excitation (and response)
levels; those in (a) under constant excitation
conditions, while some data measured under
constant-response conditions are shown in Fig. 4.
(b). It should be noted that, at a practical level, the
control of either excitation force or response
displacement to a prescribed level is often very
difficult to implement because nonlinearity in the test
structure can cause the level regulation or control
loop to become unstable under some conditions.

Each of the other FRF measurement techniques
presents all the information contained in the response
signal, including the multiple-frequency components
generated by each component of the excitation. It is
thus very difficult, if not impossible, to relate
correctly the individual response components to the
corresponding excitation components, even though
the calculations can be made easily. Thus-produced
'FRF plots are inevitably more difficult to analyse
and interpret usefully, being distorted (as the single-
frequency sinusoidal case, above) but in a very
complicated way. In some cases, the resulting FRF
plots around each 'resonance' are relatively
undistorted and represent the behaviour of an
equivalent linearised system, Fig. 5. Of course, the
result is excitation-level (and shape) dependent, the
linearised FRF curve at a high level of excitation
being different to that for a low-level excitation (Fig.
5). Such FRF data have the feature (advantage?) that
they are more amenable to modal analysis by
conventional linear algorithms without displaying the
difficulties encountered on sinusoidal-excitation
results (see below), although close scrutiny of the
measured data often reveals distortion in the
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immediate vicinity of the resonance frequency.

It is thus clear from the above discussion that
different measurement techniques yield different FRF
curves for a non-linear structure and also, that a
given excitation signal produces different curves
when applied at different levels. None of these
variations are found on linear structures. The
sinusoidal excitation signal probably represents the
best choice when some information concerning the
non-linearity is required, while random excitation
may provide the least-troublesome approach when
conventional modal analysis procedures are to be
applied to the measured data. In any event, except
where a detailed model of the non-linear behaviour is
sought, a proper awareness of non-linear effects is
appropriate as is the use of measurement techniques
which will result in the minimum interference in the
modal test processes by the non-linearities.

4 MODAL ANALYSIS OF NON-LINEAR
SYSTEM FRF DATA

The second of the two stages of modal testing of
interest here is the (modal) analysis of measured FRF
data, undertaken in order to determine the structure's
modal parameters. We shall divide this section into
two parts: first, examining the outcome of a 'blind'
use of some standard modal analysis methods and
second, exploring the possibilities for alternative
usage of these analysis procedures in order to extract
some useful (if incomplete) information about the
non-linearity.

4. 1 Standard Use of Modal Analysis Procedures

First, we can record the results of applying a
standard circle-fit SDOF analysis to typical data from
a non-linear system. The method used [1] provides a
detailed check on the quality of the analysis results by
scrutiny of a 'damping plot' and is able to indicate
clearly the presence of distortions in the FRF data
plot - whether these originate from non-linear or
other effects. One major feature of this analysis is the
tendency to overestimate considerably the extent of
modal complexity (implying particular damping
distributions). FRF data measured using sinusoidal
excitation are illustrated by the results shown in Fig 6
and include examples of clearly-evident non-
linearities, Figs. 6 (a) and (b), as well as those in
which the non-linear characteristics have been
suppressed by making the FRF measurement under
constant-response conditions, Fig. 6 (c) and (d).

Next we consider an alternative SDOF approach
which uses the reciprocal-FRF format as the basis of
analysis [2]. This approach has the feature that data
points around the resonance peaks become the least
important of those used in the curve-fit procedure (by
virtue of the reciprocal function used) and,
consequently, the modal analysis concentrates on the
data points furthest from the resonance frequency for
which the actual response levels are generally low

and the non-linear effects least prominent. As a
result, modal analysis undertaken by this approach
tends to yield the low-level (often the linear part of
the) behaviour of the structure and to be relatively
insensitive to strongly amplitude-dependent non-
linear effects.

A third illustration of. the application of a
conventional modal analysis to a nonlinear system is
illustrated in Fig. 7 and relates to the application of
the Rational Fraction Polynomial MDOF method of
analysis to data measured on a lightly-nonlinear
system. The original measured FRF curve and the
successful curve-fit are shown in Figs. 7 (a) and (b).
The result was obtained by the identification of
several 'modes', although only one degree of
freedom is present in the (admittedly nonlinear)
system. Here, the response of the modal analysis
procedure to the non-linear system data is to
compensate for the distorted FRF characteristic by
adding computational modes to the identified model.
In more complex situations, where it is not known
that only a single mode is present, such an outcome
would be more difficult to detect.

4. 2 Modified Modal Analysis Methods

Next, we consider the possibility of adapting any of
the existing modal analysis methods, such as those
mentioned above, to yield more explicit information
on the linear and non-linear components of the
structure under study. Although the circlefit analysis
described above is effective at detecting the presence
of non-linearity in a test structure, it is not amenable
to providing more precise information, such as the
type, extent or location of the non-linear element(s).
The so-called 'Inverse Method' does have some
possibilities, however. For a single degree of

freedom system, the pair of plots Re H () vs 02

and Im(H'l () vs ® should both yield straight lines
in the region of resonance, so long as the system
parameters are constant. Failure to satisfy this
condition, such as occurs during variable-
displacement tests on non-linear systems, will cause
one or both of the aforementioned plots to be curved
and the form of such curves can be analysed to yield
information on the non-linearity in the form of ke(x)
and Cg(x) where kg, C, are the effective stiffness and
damping coefficients, and x represents the amplitude
of vibration displacement. The basis of the analysis
of this form is illustrated in Fig. 8 where, using only
the conventional FRF data measurement, an
indication of the effective non-linearity can be
extracted from the equivalent stiffness of the system
at each individual measured frequency. Of course,
this result does not indicate, nor permit the
determination of, the actual type of nonlinearity
present - only its effect on the steady-state response
of the structure.

One limitation of this method is an implicit
assumption, in addition to those applicable to all



@

3
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SDOF analyses, that the modal constants (mode
shapes) of the structure are all real. This is not
always realistic and so restricts the usefulness of the
inverse method. An alternative approach has been
proposed [3] in which pairs of FRF points are taken
from the same FRF plot, each pair comprising one
point below resonance together with another above
resonance with both sharing the same
response level (so that they both relate to the same
effective stiffness and damping properties). Analysis

of these FRF values permits estimation of the modal
properties which apply to that response level.
Repeated application using different pairs of points
across the resonance region can yield indications of
the variation of system properties with vibration
amplitude, as before. Some results obtained in this
way are shown in Fig.9, both for an electronic
circuit, Fig.9 (a), and for a practical aerospace
structure, Fig.9 (b).
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In summary, it is seen that proper use of
conventionally-measured FRF data, and associated
modal analysis methods, can both detect and help
avert the influences of non-linearities. It is also seen
that a start can be made on identification of the
nonlinear effects, without the use of advanced or
non-standard analysis processes, although the scope
of such identification is limited to determining the
effective stiffness and damping properties. If these
are sufficient for the eventual application of the model
which is sought from the test, then this is an
appropriate approach to take.

5. LOCATION OF NON-LINEARITIES

We shall conclude this survey of modal testing and
non-linear structures with a mention of the
applicability of some of the recently-developed
techniques for model updating. The essential purpose
of model updating is to locate, and then to correct,

differences between an analytical model of a structure
and the 'true’ model, based on measurements of the
structure's vibration properties. The interest here lies
in the possibility of adapting the usual Analysis/I'est
comparison to include a Test/Test comparison where
data from the two tests relate to different amplitudes.
Thus, a test conducted at a low response level could
be compared with one undertaken at a high response
level in order to identify which stiffness and/or
damping elements in the structure cause the recorded
differences between the test results by virtue of their
amplitude-dependent characteristics.

Most model updating methods are based on a direct
comparison of the predicted and measured modal
properties [4], but at least one exists based on FRF
data (instead of modal data) [5]. Both types can be
applied in the case of non-linear behaviour although
the latter, FRF-based, approach is the more suitable
(indeed, the method in [5] was developed specifically
for non-linear applications).



