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NOTATION IN ORDER OF ITS APPEARANCE

Chapter 1

LTIC
)

o(1)
o(n)
u(1), u(n)

6"(1)

Chapter 2
LDECC

Yo(8), Yao(n)
Yro(8), Yso(n)

SDE

h(t), h(n)

H(s), H(z)

rxy(t)v rxy(n)
or

x()*y()

y(0),y(n)

Chapter 3
Cy(7), Cyy(n)

Linear, time-invariant causal (system).
The rectangle function:

M@ =1,
The Dirac delta function:
S rwswdi ),

The discrete pulse function or kronecker delta:

~05<t<05 =0, |t]<05

for f (¢) continuous.

o(n) =1, n=0; =0, otherwise.
The continuous and discrete unit step functions:
u(t) =1, t>0;, =0; =0, <0,
u(n) =1, n=0, =0, n<0

J 08w d = (=1 17(0)

Linear differential or difference equation with constant coeffi-
cients:

+ ay(1) = f(1)
ora,y(n) + a, . y(n—1)+---+a, ,y(n—p)=[(n

ay"(t) + a,_ ") + - -

The homogeneous response found with f( ) = 0.

The forced response or the one unique solution of the LDECC that
contains no part of yy.

The system differential or difference equation:

+ aOy(t) = b()x(t) B bmxm(t)
-t bn—lx(n = l)

any"(t) + an—lyn_l(t) +oee

or any(n) S an—py(n ‘P) :bnx(n) S AT

The impulse and unit pulse response A(?) is the solution of the
SDE with x(¢) = 6(¢) and y(¢) = 0, t < 0; h(n) is the solution of
the SDE with x(n) = 6(n) and y(n) = 0, n < 0.

The system function y;, + x when x(¢) = e” or x(n) = z™

- -+ b,s" byz? + « « « 4 byz?™!

s H(z) =

n
- -+ a,s az’ + ... +a,,

The convolution of two deterministic functions x and y:

ro(d) = [ “x(p)y(t = p)dp. ro(m) = 3 x(p)y(n — p)
p—
The zero-state output of a LTIC system to x() or x(n), given as:
x(t)*h(t) or x(n)*h(n)

The cross-correlation of two deterministic, finite-energy wave-
forms x and y given as:

o

S Xy +ndp or X x(py(p+ m

—o



CIX("')’ Cxx(n)
R(7), Rix(n)

ny(T) s ny(n)

Cu(7), Cp(n)

R, (7), R,,(n)

ny(T), ny(n)

Chapters 4-7
X(s)

X(2)

x(1)

8733346
The case when y = x, the autocorrelation function

The autocorrelation function for a finite-power periodic waveform
or random process. As a time average:

—_— 1
l
Ry (7) = x()x(t + 7) = !M ZTf x(p)x(p + 1) dp
f e 1
= - 11m
or  R,(n)=x(p)x(p+ n) N, E x(p)x(p + n)

As an ensemble average for a stationary random process:

R (1) = x()x(t + 7) = llm ;Tf x(Ox,(t + 1) dt

I W
Ruen) = X(p)x(p + ) = M =3 x(p)x(p + m)
i=1

For ergodic processes, ensemble and time averages are identical.

The cross-correlation function defined with x(¢ + 7) replaced by
y(t + 7)and x(p + n) replaced by y(p + n) in the autocorrela-
tion function definition.

The correlation transfer function:

Cin(7) = h(7) @ h(7) Cun(n) = h(n) © h(n)

The autocorrelation function of the output of a LTIC system
with random input:

Ryy(T) = Rxx(T)*Chh(T) Ryy(n) = Rxx(n)*Chh(”)

The cross-correlation of a random input and output for a LTIC
system, given as: i

R (1)*h(7) or R, (n)*h(n)

The one- or two-sided Laplace transform, defined as:
f “x(e "dt, o> a, f “x(edt, o, <o <o,
0 -

The one- or two-sided Z transform defined as:

@ @

Zx(n)z‘", |z| > pi, Zx(n)zfny pr <zl <p

0 —o
The inverse Laplace transform, defined as:

l o+ jo
x(t) = — X(s)e* ds
0= Cf ()

= Z (residues of poles to the left of o), t>0

= —2 (residues of poles to the right of ¢), t<0

(Continues on inside back cover.)



Linear Systems



Preface

The text Linear Systems: Time Domain and Transform Analysis contains
material that is suitable for a first course in linear systems as well as for a more
advanced course. The second course could be taught at either the first year
graduate level or the advanced undergraduate level. Methods of representation
and analysis are developed for both discrete time and continuous time systems.
The parallel consideration of discrete and continuous ideas provides an efficient
way to profit from the similarities between these two fundamental representa-
tional modalities.

The prerequisite skills for understanding this material are those that most
engineering students have mastered by their junior year. In particular, a basic
knowledge of differential equations and dc/ac circuit analysis is necessary. There
are also other requirements that are more important but more difficult to gauge.
These include the readers’ sincere intention to learn and their dedication to the
subject matter. Intention, rather than mere attention, implies an active involve-
ment with the text. The level of involvement will vary for each student as he or
she progresses through the book and will differ depending on the perspective
brought to the material.

The order of presentation of the subject matter does not proceed at a
uniform level of difficulty. This unevenness, we believe, actually mirrors the
learning process itself. The first three chapters (those dealing with time-domain
analysis) will probably be the hardest for the student to assimilate. Then, the
degree of sophistication drops in Chapter 4 where we begin transform analysis.
The level of difficulty is incremented with the Fourier transform (Chapter 8).
The final chapter on state variables uses ideas from the entire text. In the actual
knowledge acquisition process, time-domain analysis techniques are mastered
first, providing an introduction to the rigor of linear system concepts. For most
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students this introduction occurs during their first circuits course. Solving
differential or difference equations yields descriptions and predictions of impor-
tant variables within the system under consideration. Although these solutions
are often not easy to obtain, with transform techniques the process is reduced to
mere algebra. Transforms not only provide interesting insights into problems but
also make solutions easier to determine.

There are two major parts of the text plus a final culminating chapter on
state variables. The first portion consists of time-domain analysis and comprises
the first three chapters. Chapter 1 presents basic background material for
studying linear systems: important operations on continuous and discrete wave-
forms and the theory of singularity functions. Chapter 2 deals with the response
of linear time-invariant systems to known or deterministic inputs. As a prelude to
finding such responses we will develop the ideas that:

1. A system is often governed by a differential or difference equation.

2. A continuous system can be characterized by the impulse response, A(¢),
which is the response to a delta function é(¢), and a discrete system can
be characterized by the pulse response, h(n), which is the response to the
unit pulse, 6(n).

3. The zero-state system output is given by the convolution of the impulse
response with the input in the continuous case and by the convolution
summation of the input with the pulse response in the discrete case.

Chapter 3 extends the material of Chapter 2 to the case of systems with
random inputs or a signal plus noise input. This is a starred chapter denoted,
Chapter 3*, which indicates it should be omitted in an introductory course. First,
a detailed treatment of correlation integrals and summations for finite energy
and finite power (periodic) functions is given. Then, using only the concept of an
average value, correlation integrals and summations are defined and interpreted
for simple random waveforms. The material is intuitively challenging and
presents a novel introduction to the world of ergodic random processes. The
chapter culminates with the derivation and application of the input—output
relations for autocorrelation and cross-correlation functions for linear systems
with random inputs.

The second part of the text consists of transform analysis and comprises
Chapters 4 through 9. Prior to the middle 1970s, many students graduated with a
knowledge of the one-sided Laplace transform and its application to solving for
complete responses in RLC circuits. They also had a nodding acquaintance with
the Fourier transform as an extension of the Fourier series. Now a graduating
senior must have facility in using the Z transform as well as the Laplace and
Fourier transforms. Concise and precise presentations are therefore required.
Chapter 4 covers the one-sided Laplace transform with an emphasis on solving
for linear systems with deterministic causal inputs. Chapter 5, a starred chapter,
develops the two-sided Laplace transform and concentrates on applications
involving systems with random or signal plus noise inputs. Chapter 6 treats the
one-sided Z transform and stresses discrete systems with causal inputs. Its



PREFACE Xi

starred counterpart, Chapter 7, deals with the two-sided Z transform and in
particular its use in analyzing discrete systems with random or signal plus noise
inputs. The frequency interpretation is given for continuous and discrete signals
by using the Fourier transform and discrete Fourier transform in Chapters 8 and
9. Chapter 8 considers Fourier series and develops the Fourier transform from
the exponential Fourier series. At the end of the chapter a number of Fourier
analysis applications are examined. In Chapter 9 the discrete Fourier transform
is studied and the decimation in time and the decimation in frequency
approaches to the fast Fourier transform (FFT) are discussed.

The third and final part of the text is a last long chapter, Chapter 10. This
chapter deals with state variables and focuses specifically on applications in
control theory. The material in Chapter 10 does not properly belong in either the
time-domain analysis section or the transform analysis section of the text.
However, it employs many of the ideas explored in the first nine chapters and can
function as a culminating experience in the study of linear systems. The general
state equation formulation is developed in various realizations for both the
continuous and discrete cases. The solution of the state equations is considered.
Controllability and observability are studied and state variable feedback is
discussed along with the fundamentals of observer theory.

A goal of Linear Systems: Time Domain and Transform Analysis is to
develop intuitive and practical understanding of the essentials in linear systems
analysis. The stress is on fundamentals that are illustrated with many examples
and problems. General theories are best learned through many particulars. The
philosophy of “learning by doing” provides the framework for our presentations.
Although we believe that there exists a rough proportionality between the
amount of knowledge acquired and the number of problems worked, there are
many different ways to use the text. We encourage instructors to experiment.
The sequence that we use for the undergraduate and graduate courses is
indicated schematically:

First Course Second Course
e Chapter 1 ® Review of Laplace, Z, and Fourier Transforms
Signal Operations and Singularity Func- ® Chapter 3*
tions Linear Systems with Random Inputs
® Chapter 2 e Chapter 5*
Time-Domain Analysis of Linear Sys- The Two-sided Laplace Transform
tems ® Chapter 7*
e Chapter 4 The Two-sided Z Transform
The One-sided Laplace Transform ® Chapter 9
e Chapter 6 The Fast Fourier Transform
The One-sided Z Transform ® Chapter 10
e Chapter 8 State Variables

The Fourier Transform
® Chapter 9 or Chapter 10
(as time permits)
The Fast Fourier Transform
or
State Variables
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Chapter 1

Signal Operations and
Singularity Functions

INTRODUCTION

Chapters 1 through 3 are concerned with the evaluation of the output of linear,
time-invariant causal systems (LTIC) for different inputs. Both continuous and
discrete systems are considered:; they are subject to deterministic and random
inputs.

A continuous system is one whose input x(¢) and output y () are continuous
time functions related by a rule as in Figure 1-1(a). A discrete system is one
whose input x(n) and output y(n) are discrete time functions related by a rule as
in Figure 1-1(b).

The case of systems with deterministic or known inputs is treated in
Chapter 2, whereas random and signal plus random inputs are treated in Chapter
3. As a prerequisite to system analysis in both the time and transform domains
(Chapters 2 through 9), it is essential to be able to:

1. represent both continuous and discrete signals
2. understand the important signal operations of time-scaling, reflecting,
and time-shifting

3. physically interpret and intuitively and rapidly operate with singularity
functions.

Tasks 1, 2, and 3 will be accomplished in Chapter 1.

1-1 CONTINUOUS AND DISCRETE WAVEFORMS

A continuous waveform x(t) assigns a unique numerical value to x(¢) for all ¢,
—o <t <. Adiscrete waveform x(n) assigns a unique numerical value to x(n)

1



2 1/SIGNAL OPERATIONS AND SINGULARITY FUNCTIONS

x(1) y()

N\ — x(1) System r(@

= P rule m——

(a)

x(n) y(n)

I T (8) System ¥ T T
ISR e l l

(b)
Figure 1-1 (a) A continuous system; (b) a discrete system.

for all integer n, —» < n < ». A number of waveforms that are prevalent
throughout system theory will now be defined. A waveform is a function whose
domain is from —co to +oo.

The Unit Step Function u(?)
u(t) is defined as:

u(t) =1, t>0
=0, t<0

and its plot is shown in Figure 1-2(a).

The Rectangle Function ﬂ(t)
['1(z) is defined as:

(@) =1, —05<1<05
=0, otherwise, except at # = —0.5 and 0.5

The rectangle function is normalized with unit area and is even, as plotted in
Figure 1.2(b).
The Triangle Function A(#)
A(1) is defined as:
A(@@) =1 — ¢, -l<t<l1

=0, otherwise

The triangle function is normalized with unit area and is even, as shown in Figure
1-2(¢).



1-1 CONTINUOUS AND DISCRETE WAVEFORMS

u(t)

I(¢)

0.5

Sinc 7 = Sinﬂ
mt
P S
r_4 el
- N, 3 ;
(d)
&(n)
1@
-3 -2 -1 1 2 3 4 n
(e)
u(n)
1 T
-2 -1 1 2 3 4 5 n

()

Figure 1-2  Some common functions of system theory.

The Sinc Function
Sinc (2) is defined as:

Sinc () =

Sin 7wt

, —o <l <o

With investigation it can be shown (do so) that Sinc (#) has unit area, has a value
of 1 atz — 0, and is even. The plot of Sinc (2) is illustrated in Figure 1.2(d).



