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PREFACE

The papers in this volume were presented at the Second Workshop on Algorithms and Data
Structures (WADS'91). The workshop took place August 14 - 16, 1991, at Carleton Uniilersity
in Ouawa and was organized by the School of Computer Science at Carleton University
(Ottawa, Ont). The workshop alternates with the Scandinavian Workshop on Algorithm Theory
(SWAT) continuing the tradition of SWAT 88, WADS'89, and SWAT90.

In response to the program committee's call for papers, 107 papers were submitted. From
these submissions, the program committee selected 38 for presentation at the workshop. In
addition to these papers, the workshop included five invited presentations.

August 1991 ' Frank Dehne
Jorg-Riidiger Sack
Nicola Santoro
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A Case Study in Comparison Based Complexity:
Finding the Nearest Value(s)

Walter Cunto
Centro Cientifico IBM de Venezuelc
A.P. 64778, Caracas, Venezuela

J. Ian Munro
Department of Computer Science, University of Waterloo
Waterloo Ont., N2L 3G1, Canada

Patricio V. Poblete
Departamento de Ciencias de la Computacion, Universidad de Chile
Blanco Encalada 2120, Casilla 2777, Santiago, Chile

Abstract. It is shown that 5n/4 plus-minus lower order terms comparisons on average are necessary
and sufficient to solve the problem of finding the values of ranks immediately above and below a specified
element z in a set X of size n > 1. When z turns out to be the median of X, 1.5n 4 /7n/8 + O(lgn)
comparisons are proven to be sufficient. n + min(k,n — k) + 3Inn + O(1) comparisons are sufficient if k,
the rank of z in X, differs from n/2 by 0(n).

1 Introduction

An interesting although surprisingly-little studied problem in selection is that of deter-
mining the nearest value in an unordered array to a given value under a pure comparison
based model of computation. We address the average case complexity of this problem
more formally given as:

Problem 1. Given a set X of n > 1 elements, including a designated = € X, find the
elements of ranks one above and one below z; or report the absence of one of these.

Two variants of the previous problem are also useful. The left neighbor problem is that
of finding the largest element in X that is less than z if such element exists; otherwise,
reporting its absence. The right neighbor problem is defined symmetrically. The worst
case complexity of this problem has been fully studied [2]. A simple algorithm making at
most 2n — 3 comparisons has shown to be optimal in that case. Worst case optimality is
proven by designing a simple adversary which resembles the one given in [1] for the worst
case selection problem.

Assuming all input permutations are equally likely, a somewhat faster method, on
average, can be demonstrated. This algorithm performs 1.52 + /7n/8 + O(lgn) compar-
isons if z turns out to be (virtually) the median of X; otherwise, it performs n+min(k,n—
k) + 3Ilnn+ O(1) comparisons where k denotes the rank of  in X. If any of the possible
ranks of z in X is also equally likely, an average of 5n/4 + Hn /2 + 11H,, /5 /4 + O(1)
comparisons are performed by the algorithm.




These estimates of runtime are derived with the help of a Markovian graph model
wherein nodes represent computational states and edges represent transitions among
states performed during the computation of any problem instance. Computations are
traced by traversing paths in the graph and average performances are obtained by count-
ing average costs (comparisons) associated either to the nodes or to the edges of the
graph. Edge oriented counts along the traversals were used to derive the performance of
our algorithm conditioned to the (previously unknown) rank of z in X. Node oriented
counts were used to derive a closed formula for the average performance of our algorithm.
Finally, 5n/4 — Q(1) comparisons are shown to be required by any algorithm that solves
the problem with a technique slightly different than that discussed in [3] which counts
different types of comparisons along the computation of the solution.

2 The algorithm

The algorithm keeps track of closest neighbors found thus far on either side of z, together
with a count on the number elements seen on each side. More formally:
i) Compare the first element with z, making it a neighbor candidate on the appropriate

side.

1) Process each remaining element by comparing it with the current neighbor on the more
populous side of z. In case of equal population, the neighbor is randomly chosen.

111) If necessary, compare the new element with the other neighbor.

iv) If the new element falls between the current neighbors, compare it with z and replace
the appropriate neighbor candidate with the new value.

This algorithm, which is also suitable for on-line applications, performs at most 3n—6
comparisons; but, as we shall see, its average case behavior is more interesting.

3 A Markovian graph model

At each step, the algorithm determines whether the next element is larger or smaller than
z. This process is modeled as a Markovian graph G = (V,E). V includes all states (p, q)
with p>0, ¢>0and p+ g <n -1 such that p and q are the numbers of elements smaller
and larger than z respectively after p + ¢ steps. E contains all possible state transitions.
The collection of subsets V; = {(p,q) | p+q=1-1}, 1 <t < n, partitions the set V.
Clearly, |V;| =t and |V| = ("}!) as transitions occur only from nodes in Vi—1 to nodes in
Vi, 2 <t <n. The computation starts at s = (0,0) and finishes at any of the n states (p, q)
such that p+ g=n-1 with p,¢> 0.

A directed edge is denoted by (v,w,j) where v € V,_;, w ¢ Vi, 2 <t <mn, and
J € E(v,w) is the label of one of the transitions from v to w. Each edge (v,w,j) € E
specifies the number of comparisons c(v,w, j) to be executed and its transition probability
pr(v,w,7). Note that G is nonsimple.

Since G is a Markovian graph, the sum of probabilities associated with transitions
starting from the same node must equal 1, that is

VweViy, 2<t<n, ). Y pr(v,w,j)=1. (1)
weV, jEE(v,w)

Also, transitions in G are symmetric with respect to central nodes (those states (p,q)
such that |p—q| <1). Figure 1 summarizes the number of comparisons and the transition



. First type of transitions, p =g =0,

c({0,0),(0,1),1) = ¢((0,0),(1,0),1) = 1
Pr((0,0),(0,1),1) = pr((0,0),(1,0),1) = 1}
Second type of transitions, min(p,q) = 0 and max(p,q) > 0
c((p.a)(pg+1),1) = c({g,p)(g+1p)1) = 1
c((p,q),(p,a+1),2) = c((a,p),(a+1,p),2) = 2
c(pa)pt1,9),1) = c({a,p)(g,p+1),1) = 2
r((pa) (p,g+1),1) = pr((ap)g+1p),1) = 2
pr((pa),(pa+1),2) = pr((a.p)h(a+10)2) = ;0
P"((p;q>!(1’+11Q>r]) = pr({q, )v( P+1,1) = ,;+;+2
Third type of transitions, p,g > 0 and p # g,
c({pg), (pa+1),1) = c((a,p)(¢+1Lp)1) = 1
c({pa)(pg+1),2) = c({a,p),(a+1,p),2) = 3
c((pq)(p+1,9),1) = c((a,p),(q,p+1),1) = 2
c({pa)(p+1,9),2) = c((a,p),(q,p+1),2) = 3
rr((pa)s (pg+1),1) = pr((e.p) (@ +1,p),1) = 5,':‘;‘-&%1
rr((pah (pa+1),2) = pr(le.phla+1Lp)2) = o
rr((p,a), (P+1,0),1) = pr((@.p)lap+1),1) = ",’,'I.,’;’Z
rr((pa)(p+1,9),2) = pr(e.ph(@ar+1),2) = 05
Fourth type of transitions, p=¢q > 0,
(mp)(pp+1),1) = c((pp),(p+1,p),1) = 1
c((pp),(pp+1),2) = c(pp)(p+1,p),2) = 2
c((pp),(pp+1),3) = c((pp),(P+1,p),3) = 3
rr((pp) (pp+1),1) = pr((pp), (p+1,0),1) = 2%
r((p.p) PP+ 1),2) = pr((pp)(p+1,0).2) = 2%
pr((pp) (pp+1),3) = pr((pp),(P+1,0),3) = 35

Fig. 1. Summary of comparisons and probabilities per type of transition

probabilities associated with edges in the graph. The probability value of each transition
follows from the assumption that any permutation of the input data is equally likely.

The computation of any given input instance is traced by a path starting from s and
ending at onc of the nodes in V,. Transitions in the path follow an increasing sequence
according to the partition of V' and different instances may follow the same path. For a
given instance, the number of comparisons performed is the sum of comparisons of each
edge along the path followed. The probability of traversing any path is the product of
probabilities of each edge in it.



Let v — w denote any possible transition between two designated nodes and s % w, any
path from the initial node to a node w. The average number of comparisons performed
by the algorithm with an input of size n is '

Cn= 3 (s Sulpr(s-Su). (2)

The probability of reaching a node w e V is
pr(w)= Y pr(s>w) (3)
sSw

and the probability that the algorithm performs a transition in E(v,w) is given by

P"(”:w) = pr(v) Z pr(v,w,j)) C (4)

j€E(v,w)
Equations (3) and (4) are related. A simple induction on the path sequence shows that
pr(w) =3 pr(v,w) . (5)
veV

The average cost associated with each vertex v € V and the average cost associated with
each set of transitions E(v,w) are defined respectively as

E(v) = E Z C(vaw)j)p"(v’w»j) (6)
weV jeE(v,w)

and . :
ZjeE(v,w) c(v,w,j)pr(v,w,j)

i€ E(v,w) Pr(v,w,7)

&(v,w) =

(7)

The following lemma presents two methods for computing the average number of
comparisons Cy. The first one is node-oriented while the second is edge-oriented. In
addition, both methods can be adapted to any dynamic process described by an acyclic
Markovian graph with transition costs.

Lemma 1. The average number of comparisons C, performed by’the algorithm can is

Cn =Y &(v)pr(v)= > (v, w)pr(v,w) .

veV v, wevV

Proof. The proof is by induction on n which trivially holds for n = 1. When n > 1 and
transitions from V,_; to V, are fixed, equation (2) can be rewritten as

Cn = Z 3 Y. (s Sv—wpr(sBv - w).
vEVa1wEVn , %y L0

Grouping all possible transitions from v to w gives

Cn= 3 2 2 X (ds50)+c(v,w,]))pr(s Sv)pr(v,w,5) . (8)

v€Vh-1, 2, , wEVL jEE(v,w)



1 ifp=¢=0,

14+ 2 p+¢+2 if min(p, ¢) = 0 and max(p, q) > 0,
(pa) = 1+£“—;‘§%ﬂ— ifp,g>0andp#q,

z+zp+z ifp=¢>0.

Fig. 2. Summary of average cost by type of state

From (1), equation (8) becomes

Cn= Y c(sSv)pr(sSv)
ve€Vp_y °

*
s —v

> (Zw(siv))(z > c(v,w,j)pr(v,fv,j)).

v€EVn_1 w€Vn jEE(v,w)

(9)

-
§$—v

When (2), (3) and (6) are taken into consideration,

Co=Cna1+ Y, pr(v)e(v). (10)
v€EVh_1
Otherwise, if (2), (4) and (7) are substituted into (9),
Ca=Cnat+ Y, pr(v,w)e(v,w). (11)
. vE€Vh_y
wEVn

The lemma follows by carrying forward the inductive hypothesis. J

Since equations (10) and (11) are recurrent, the average number of comparisons C,
can be easily computed.
4 Average case upper bounds

When the execution of an instance is traced with a Markovian graph described above, any
of the nodes in the same partition subset is equally likely to be reached by the a.lgomthm
This property is stated in the next lemma.

Lemma 2. vw e V;, 1 <t < n, pr(w) = 1/t.
Sketch of proof. From (4) and (5), the probability of reaching any node in V, can be

inductively defined as
pr(w)= 3 pr(v) > pr(viw,j).
veVey JEE(v,w) ‘
A proof by cases with the cases presented in Figure 1 completes the proof of the lemma. i

Corollary 3.

Co= ¥ Y aw). (12)

1<t<n—-1 weV,

Figure 2 displays the average cost for type of nodes in the graph.



Theorem 4. If |X| = n > 1, the average number of comparisons performed by the
algorithm to find both neighbors of x € X is

0 ifn=0,
1 if el
Cn= % ifn=23, and

ifn>4.

S

_ Usn+ 38 + 4 (Hlnjy - 250 2) -4 +
where Hy =31 11/i =1nn 4+ O(1).
- Proof. Regrouping equation (12) by type of nodes,

i) n>5._

_ 2 n+2 n+p4+4  3n+6
C’,.—C,_,+n_1( —as S e T ((n+1)mod2))
1<p<|n/2| -2

i)

& =1, Gy=1, C3=g-andC4=2—65-.
Algebraic manipulation of the previous equation leads us to
i) oddn>7
Cn20p2+g+¥?+ﬁgT—ﬂ§§7,
11) evenn > 6 '
Cn = n——2+§+10+ - .

n

2 2(n-1) n-2"~
The desired result stated above is obtained by recurring on n. j§

An interesting question is how many comparisons are performed on the average if the
rank of z in X turns out to be k. In this case, we will show that n + min(k,n - k) + o(n)
comparisons suflice. Moreover, when z happens to be the median of X, the lower order
term becomes O(y/n), as the algorithm is essentially betting the new element will fall on
the less likely side of z.

Let us consider the algorithm starting at state s and stopping when some predefined
state (p,q) is reached. As explained before, each possible execution of the program de-
termines a path from (0,0) Lo (p,q) and since we are sampling without replacement, each
one of the (p,q) = (P"';") paths is equally likely.

Conditioned to the fact that (p,q) is the final state, the probability that any of the
possible transitions between two states is fraversed by the algorithm is

pr(G ), G+ 1,3)) = (”j)@a;)l,q—j) -

(G,9)p-1,9-3-1)
(p,9) ’

Such probabilities are zero if the corresponding transitions are not included in any of the
paths between the initial and the fixed final state.

pr((i,9), (45 +1) =




1 fi=35=0,

1+ ifi=0andj>0,
ifi>0and =0,

2 + ifi>0and 0<j<i,

§+~+L ifi >0andj=4

1+T ift>0and 5 > 1.

&(5) = (i +1) =

Fig. 3. Summary of aﬁerage cost per type of grouped transitions

The average performance C(p,q) will be computed with equation (11) adapted to
this specific context. Observe that the subgraph associated with the execution of the
algorithm will be confined within states (i,5) such that 0 <i < p and 0 <7< q. The
average cost per type of transition is given in Figure 3. Such average costs are symmetric,
that is

E((")]) =3 (7: + 11j)) = E((J)"‘) b (jai 53 1)) ¥

Theorem 5. The average number of comparisons performed by the algorithm conditioned
to the fact that it stops at state (p,q) is

C(p,q) = max(p,q) + 2min(p,q) + 2H, max(p.q) T Hrin(p,q) ~ 2Hp+q 2. Hy+ Hy-2
+op0+80- 3 (1-17) b

p+1 (13)
1 1\ Gi)p-4,q9-13)
+5 . .
. 0$j5§n(r.q) ( 2 1) (p,9)
Proof.

Cra)= 3 (14 747 ) 3 P i+ 1)
7>0 0<i<y
+ 2 (14 127) 3 prlod G+ 1,5)
120 / 0<5<1
P ( *—1—1) Yopr((,5),6,5+ 1) + Z (2+ 1) 3 pr((,3), G+ 1,5))
320 1>] wid i>t

wlr—-

Z ( T 1) (Pr(G:3): 613 + 1) +pr((, 3, G +1,5)))

1
0J+1

Pr((0,7),(1,7)) = Y. pr((3,0), (3,1)) .

0 >0

7 04 1)- 5 Pr(6,0), 6+ 1,0)

<.
v

<.
v

o



Simplification of the inner summations gives

Cra)= ¥ (1+:35)+ T (2+531)

0<j<max(p,q) 0<;<min(p,g)

1 (4,9)(p- 3,9 -7) 1 (pg-j-1)
B (1 ) 1 @

2 0<J<§n(p ) J+1 (r,q) _ OSJE-<qJ +1 (»,q)

j<max(p,q)
1 (p-i-1,9) (p-1,9-3)

- 1-6

OQZ;}," +1 (r,9) 0<]24<q (r,q) ( n0)

e Z (P Y b 1)(1_5,0)'

0<i<p (P, q)
Expression (13) is obtained by using identities Al and A2 from the Appendix in the
previous expression.
Theorems 4 and 5 are relaied since it is not difficult to realize that

Crn=2/n > C(im-1-3).
0<i<[n/2]-1

From Theorem 5, two particular cases are considered:
1) p=¢g=(n+1)/2 with odd n,
i) p=an, ¢=(1-a)n for a fixed a € (0, }).
The case a € (7, 1) is symmetric to 1.

Theorem 6. The asymptotic average number of comparisons performed by the algorithm
when z is the median of X (and n is odd) is

1 n+41
C’("; o ) 5 +2,/ +3lnn+0(1) .

Proof. If p is substituted for q into equation (13),

1 (ha)p=5p—7)
C(p,p)——3p+5H,,—2H2p b 2( +1) +20p0t 5 0<Jz<p< ]+1) (7,p)

Further simplification of the previous expression is obtained with identities A3 and A4
from the Appendix, that is

LByl 4

1+ * 2(p,p)

The previous equation is then asymptotically expanc=d with identities A6 and A8 from

the Appendix getting
11 1
() 1/ o

: . 5 .
C(p,p) = 3}7 + 5Hp - 21{2? - E + 26’,'0 -

. e e 0 - g g 7 1 /&
C(p,p)——3pi~2-\ﬁrp~t 31nn+31——2-—2ln2+—m\/;

A simple replacement of p by (n + 1)/2 proves the lemma. §



Theorem 7. The average number of comparisons performed by the algorithm when the
rank of z in X is an, for any fized a < 1/2, is

C(an,(1-an))=(1+ea)n+3lnn+0O(1) .

Proof. If p= an and ¢ = (1 —a)n in equation (13) and identity A5 from the Appendix is.
applied, then

C(an, (1 - an)) = (1 + a)n + 2Han + 3H(1_u)n - 2Hn -2

1 an (an) ;1 i ' (an), i .
+2(1—a)n+1’z>% e “2'(1—a)n+1§,_ni —_

Identity A8 from the Appendix with g(z) = 1/(1 - 2z) and g(z) = 2z/(1 - 2z) solves the
summations in the previous expressions. f

5 Average case lower bounds
Let us consider the following (easier) problem:

Problem 2. X is a set of n > 1 numbers with two designated neighbors w and z, such
that w < z, verify that w and = are indeed of consecutive ranks (ranks of w and z are
unknown in advance).

It is assumed that elements w and z are stored in registers, while the other n — 2
elements are in the array X. To simplify the discussion, we will assume the values in
question constitute the distinct integers 1 through n with w and z of consecutive but
unknown ranks; thus, there is no need to distinguish between the kth smallest element of
X and the number k. Clearly, any lower bound for Problem 2 is also one for the more
general Problem 1.

In developing a lower bound for the number of comparisons tc be performed by any
algorithm which solves Problem 2, three types of comparisons will be considered: partition
comparisons, straddle comparisons and closer comparisons. Any solution of Problem 2
must identify the elements smaller and larger than z. Thus, for any element smaller than
w, its partition comparison is the first comparison between it and either w or another
element lying between these two. Symmetrically, if the element is greater than z, its
partition comparison is the first comparison between it and either = or an intermediate
element between both elements. It is not difficult to realize t.at n—2 of such comparisons
must be performed in order to get a consistent solution. It is expected, however, that
some comparisons which are not partition comparisons will be performed, and in this
case, we will focus only on straddle comparisons: those involving an element not greater
than w with another not smaller than z. »

Partition and straddle comparisons will be related through the concept of closer com-
parison. Let 8.(w) and 0x(z) denote the rank of w and z in X for a given the input
permutation = respectively such that 6x(z) = fx(w) + 1. The closer comparison of any
element k € X for a given 7 is the first comparison between it and an element l € X
subject to ;

i) k= 0e(w) =3, € [l..min{fx(w) - 1,n - x(w)}], and l € [k + 1..6-(w) + 1], or
ii) k=0x(z) +1,1€[l..min{fs(z) - 1,n - 0x(z)}], and I € [0x(z) — 2.k - 1l



