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FOREWORD

Evgeni Velikhov
Vice President of the Academy of Sciences of the USSR

Itis a pleasure to contribute an introduction to this twelfth volume of the
international Machine Intelligence series. My own work has, at times,
cast me in the scientific roles of experimenter, instrumentation designer,
and administrator. In all these roles I have seen the growing pervasive-
ness of the new tools of information technology. As a visitor to the 1987
meeting in Milan of the International Joint Conference on Artificial
Intelligence I received a vivid impression of the role that machine intel-
ligence in particular seems destined to play in this, the final decade of
this century. Economic growth is increasingly dependent on new
technologies in which the intelligence of machines plays a leading role.
The concept of machine intelligence itself acquires a new semantic
content. This is demonstrated by the evolution of new disciplines such as
mechatronics as well as by the increasing importance of intelligent tools
in manufacturing. It seems extremely important for the future of the
human species that the mind that machines develop grows faster than
the muscles, that is the energy parameters.

Looking at the eleven previous impressive volumes of Machine Intel-
ligence one observes that the MI conferences have covered a significant
part of the world including the Soviet Union where, before MI-12, the
ninth MI conference was also held in 1977. I believe that the style and
the content of the Machine Intelligence series will continue to reflect the
much needed dialogue between various societies.



PREFACE

For almost twenty-five years I have, as editor of these volumes, presided
over the inquisitiveness of the newly arrived. The young delight to get
their noses into everything. But unbounded promise must sooner or later
confront the emergence of what in ecology and in entrepreneurial com-
merce are known as ‘niches’. Possibly, machine intelligence has, during
all this time, been sleepwalking towards its own true niche. In any case,
the series must now select one. Along what line do we see the future
commitment of the Machine Intelligence series?

In 1986 a Steering Committee was formed to set a direction and to
initiate the formation of an international editorial board with an execu-
tive editor and two associate editors to support the work and to organize
the workshops themselves. These will resume their initial annual tempo.
As editor-in-chief 1 am privileged to welcome our future executive
editor Dr Stephen Muggleton. With regard to directions, the central
theme will be the design of automated support for intellectual discovery
and its application. Sophistication of computing aids is a conspicuous
feature of today’s scientific scene. From the astrophysicist's super-
computer to the field worker’s pocket machine, the race has been to
automate every function but one. That one is scientific reasoning itself,
whilst AT has been the laggard.

More than a quarter of a century ago, the Nobel Prize-winning
chemical microbiologist Joshua Lederberg had a vision of intelligent
machines as partners in the scientific quest. In Stanford’s DeENDRAL
project he initiated the first inroad into organized empirical enquiry.
The tools of that time were too weak to accomplish more than the plant-
ing of a series of signposts, some of which appear in earlier MI volumes.
Among these the MetaDenpraL module set a crucial pointer to the
need, reflected in this volume, to mechanize the inductive as well as the
deductive component of the cycle of scientific inference.

A modern scientist can fairly be described as an inductive agent
loaded to breaking point by complexity. Reporting from a sector where
the strain is especially severe, Ross King describes in this volume an
application of computer induction to the prediction of protein folding.
Elsewhere he has written that ‘it was once possible to discover the
meaning of new data by carefully examining it by eye’. That time is, of
course, long past. Today, decision supports from statistical data analysis
are pressed into service. But now even these impressive constructions
are proving inadequate to such complex requirements as those of
biotechnology for empirical theories of structure—activity relationships,
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PREFACE

and the requirement for better models of our planet as a basis of rational
plans for the next century.

At some stage in the mechanized analysis of any sufficiently complex
problem, further progress (as indicated for example in the chapter by
Mozeti¢, Bratko, and Urbancic) has to await intelligible mechanization
of the underlying relations of cause and effect. The wheel here comes
full circle. John McCarthy’s paper of just 30 years ago, ‘Programs with
common sense’, placed at the ¢cdre of AI's coming tasks the need for a
machine-oriented logic capable of expressing causality in everyday life.
Progress has subsequently been made, but in its unrestricted form
McCarthy’s plan remains ambitious. By restricting the aim of mech-
anizing causal reasoning to defined domains of scientific study we may
find both a measure of tractability and also uncommon rewards.

Not the least reward must surely be the sense of mutual usefulness
among disciplines, which forms the living cement of our invisible college.

June 1990 Donald Michie
Editor-in-Chief
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1
Modularity of Knowledge

E. Tyugu
Institute of Cybernetics,
Estonian Academy of Sciences, USSR

When you lose a game of chess to a computer then don't pretend
that you didn’t think at the game.
S. Maslov

Abstract

Merging different kinds of knowledge in problem-solving is discussed.
Several formal calculi are considered as knowledge representation
means, and uniting calculi in the NUT programming system is described.

This paper has been inspired by the last book of Sergei Maslov [1]
where he described a tower of deductive systems as a representation of
scientific knowledge about the world. He illustrated the usage of formal
calculi by numerous examples from biology, economics, and technology.

1. INTRODUCTION

We shall discuss here modularity of knowledge in the large. This is not
breaking the whole of available knowledge into uniformly represented
parts. We are interested in merging various kinds of knowledge and using
them all together for achieving some hard goal. The question is: ‘How to
combine different knowledge representations and handling techniques
in problem-solving systems?’

Experience shows that no universally efficient knowledge represen-
tation and handling technique exists. On the contrary—a number of very
different methods have been developed for solving practically interest-
ing problems in various domains. When considering human intelligence
one can also distinguish basically different knowledge-handling mech-
anisms that are associated with the left and right parts of the brain, that is
with logical and intuitive ways of thinking. We can hope that using
different knowledge-handling methods in combination will help us to
improve the intellectual capabilities of Artificial Intelligence (ar)
systems designed for practical applications.

At first glance, blackboard systems seem to be a good example of
modularity of knowledge in the large. This is true only when we are
considering aspects of implementation. Blackboard systems provide a

3



MODULARITY OF KNOWLEDGE

framework for implementing modularity of knowledge, but they do not
help us in finding suitable forms of knowledge representation.

This paper is based on an assumption that any knowledge system (ks)
which is knowledge representation plus inference engine can be reduced
to a formal calculus that adequately represents knowledge processing in
this ks. This statement become trivial as soon as we loosen the require-
ment of adequacy: on a sufficiently low level we can use Turing machines
or Post’s systems for representing information processing in computers.

Secondly, this paper elaborates on an observation that any successful
Al system contains more than one ks, that is it is based on several calculi
combined with each other in non-trivial ways. The latter means that
there is no obvious natural way to build a single calculus preserving the
requirement of adequacy. Putting together calculi of various knowledge
systems mechanically would give us a tower of Babel of formal
languages—a calculus that is incomprehensible as well as inefficient.

Nevertheless, all purely procedural forms of knowledge can be
represented by a single calculus. Any representation of computable
functions together with application rules for functions can be used for
this purpose (Markov’s normal algorithms, recursive functions, etc.).
Let us call the calculus chosen the calculus of computable functions
(ccr). It seems that ccr is present in any sufficiently general knowledge-
based system, because procedural knowledge is a convenient means for
providing extensibility to a knowledge-based system.

As soon as we intend to apply procedural knowledge automatically,
another calculus is needed for invoking programs. We have good
examples of systems where two calculi are used, one for procedural
knowledge and another for control of computations. ProLoG combines
Horn clause logic with ccr, structural synthesis of programs uses
intuitionistic propositional calculus (irc) for control and ccr for the
procedural part.

We have developed programs that contain more than two ks’s. The
system Priz [2] and MicroPriz [3], besides the ccr and 1rc, also use a
rewriting system as a user-friendly front end. It transforms specifications
written in a high-level specification language into a set of specific axioms
of a formal calculus.

One more calculus is added to those mentioned above in the systems
ExpertPriz and nut [4]. ExpertPriz is an extention of MicroPriz that
combines inductively built knowledge bases supporting simple decision-
tree logic with the three calculi of Priz. The nuT system combines first
order calculus of productions with Priz calculi.

2. FORMAL CALCULI AS KNOWLEDGE REPRESENTATION
MEANS

There are many papers on using logic for knowledge representation [5].
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Our thesis is that in all cases when we use knowledge, making inferences
step by step, we can build a calculus that represents this knowledge and
the inference engine. It is obvious that this thesis cannot be proved
formally. However, looking at numerous examples we can find good
evidence in favour of this thesis. First of all, making inferences means
using knowledge in a deductive way, and in his book [1], Maslov has
described a number of calculi, called also deductive systems, which are
formalizations of knowledge in various domains. He has defined the
concept of calculus in a very general way that suits us well:

There are a certain number of initial objects and a certain number of rules for
generating new objects from the initial objects and from those already constructed. To
put it another way: There are an initial position (state) and ‘rules of the game’ (rules for
transition from one state into another). A system of this kind is called a deductive system,
ora calculus.

Let us consider semantic networks as an example of knowledge
systems and let us try to build a calculus for them. There are various
kinds of semantic networks and different inference mechanisms for
working on these networks.

Bearing in mind that any semantic network is a marked graph, we can
represent it as a collection of arcs. For instance, Figure 1 shows a
representation of explicit and implicit time-relations in the following
text:

John must pick up his report in the morning and have a meeting after
lunch. After the meeting he will give the report to me.

The arcs of the network will be objects of the calculus we are building.
In this example we have the following objects:

before (lunch, morning)

after (morning, lunch)

after (lunch, have a meeting)
after (have a meeting, give)
at-the-time (morning, pick up)

morning lunch

at-the-time

pick up

Figure 1. Time-relations.
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Sometimes it is more convenient to use another representation of the
network, looking at nodes as relations that bind all their neighbouring
nodes. In this case the objects will be nodes, used as relations between
the other nodes (their neighbours).

Inference on a semantic network is done by propagating facts (or,
more generally, ‘pieces of knowledge’) along the arcs of the network. As
a result, the network itself or the marking of its nodes is changed.
Inference rules, as usual, are schemes of the following form:

Sp.o, SFS

where objects S, . .., S, are premises and the object Sis a conclusion. In
our case there are rules for transitivity of some time-relations, for
instance:

before (x,y), before (y,z) F before (x,z).
after (x,y)  before (y,x).
at-the-time (x,z), before (y,z) F before (y,x).

Applying these rules we can make inferences like:

after (lunch, have a meeting) - before (have a meeting, lunch) at-the-
time (pick up, morning), before (lunch, morning) + before (lunch,
pick up)

and add new arcs to the graph.

3. HOW TO COUPLE CALCULI?

First of all, let us consider briefly the implementational aspects of
coupling different calculi. There are well-known ways of implementing a
system which consists of several interacting experts:

(1) building a network of communicating actors (processes, experts)
(61;
(2) using blackboard architecture [7, 8, 9];

(3) using broadcasting as a means of communication between the
experts.

All these ways can be used for writing knowledge systems, each of
which will be then represented as an ‘expert’ with its own knowledge
representation forms and inference engine.

A network of experts can be efficient for loosely coupling several
knowledge systems. Object oriented programming is suitable for this
purpose, because message passing can be directly used for communica-
tion between the ks’s. Actually, any tools for programming communicat-
ing sequential processes can be used.
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Another way to achieve the same goal is to use ‘broadcasting’. In this
way we can organize knowledge systems to show collective behaviour
that mimics the behaviour of a group of co-operating human experts.

The closest co-operation between the knowledge systems can be
provided in a blackboard system. In this case, a considerable amount of
knowledge (the blackboard) is visible for all knowledge systems. The
question remains, how does each ks understand the knowledge on the
blackboard? But this is one of the principal questions that need to be
considered when writing the ks.

In order to choose one or other of the architectures we must consider
the principles of writing a ks. Some useful hints can be obtained from
pure logic.

In proof theory we can find examples of successful decomposition of
theories. Roughly speaking, sometimes a theory can be split into several
parts, so that different inference methods can be applied and efficiency
of search can be significantly improved. The following two techniques
are worthy of mention:

(1) constructing a set of admissible inference rules:
(2) using a metatheory.

Both these techniques have analogies in knowledge-based systems.

Yet another useful way of combining calculi comes from logic. Let us
take a constructive non-categoric theory (that is, a theory that has more
than one model). Models of constructive theories can again be con-
sidered as calculi. So we have a non-trivial relation of interpretation (‘to
be a model of’) between the calculi. Probably the relation of interpreta-
tion is the most widely used relation between the calculi in knowledge-
based systems.

In papers on algebraic data types which are represented as hetero-
geneous algebras, we can find a number of relations between algebras
[10]: abstraction, concretization, extension, restriction, enrichment, etc.
To an extent, these relations are also meaningful for calculi of knowledge
systems.

4. UNITING LOGIC WITH PROCEDURAL KNOWLEDGE

A good example of uniting logic and procedural knowledge is ProLog. It
combines Horn clause logic (ncr) with a procedural knowledge system
(ccr). Connection between the ner and the ccr in ProLoG is established
through the realization of functional constants and some predicates as
pre-programmed procedures.

A text in ProLog, that is, the logical part of a ProLoG ‘program’ con-
sists of clauses
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