W)

Georgia Tech

DIGITAL SIGNAL PROCESSING
LABORATORY SERIES

DIGITAL
FILTERING

A Computer Laboratory Textbook

Russell M. Mersereau
Mark J.T. Smith




M

OEEN1 50

Georgia Tech
DiGiTAL SIGNAL PROCESSING

LABORATORY SERIES

DIGITAL FILTERING
A Computer Laboratory

Textbook

RUSSELL M. MERSEREAU
Mark J. T. SMmITH

corgia Institute of Technology

T

WILEY

Il

New York e Chichester e Brisbane e Toronto e Singapore

7R3 Wf




Acquisitions Editor Steven Elliot

Marketing Manager Debra Riegert
Senior Production Supervisor ~ Savoula Amanatidis
Cover Designer Bonnie Cabot
Illustration Coordinator Sigmund Malinowski
Manufacturing Manager Andrea Price

This book was typeset in Times Roman by the authors and printed and bound by Malloy
Lithographing, Inc. The cover was printed by Phoenix Color Corp.

Recognizing the importance of preserving what has been written, it is a policy of John Wiley &
Sons, Inc. to have books of enduring value published in the United States printed on acid-free
paper, and we exert our best efforts to that end.

Copyright ©1994, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond

that permitted by Sections 107 and 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is
unlawful. Requests for permission or further information should

be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

Mersereau, Russell M.

Digital filtering : a computer laboratory textbook / Russell M.

Mersereau, Mark J.T. Smith.
p. cm.

System requirements for computer disk: IBM-compatible PC (80286
microprocessor or better recommended); 640K RAM; MS-DOS; hard disk;
CGA, EGA, or VGA display; floating point math co-processor and
standard ASCII text editor recommended.

Includes bibliographical references (Pref.).

Includes index.

ISBN 0471-51694-5

Electric filters, Digital-Design and construction—Data
processing. 2. Signal processing—Digital techniques—Data
processing. 3. Digital filters (Mathematics) I. Smith, Mark J. T.

II. Title.
TK7872.F5M467 1993
621.3815'324'078-dc20 93-17580

CIP
Printed in the United States of America

10 9 87 6 5 4 3 21

Printed and bound by Malloy Lithographing, Inc.



¥00q1x3a]
A10ip.10qvT 49indwio’) y

ONIYALTIA TVLIDIA



THE GEORGIA TECH DIGITAL SIGNAL PROCESSING LABORATORY SERIES
Editors:

Thomas P. Barnwell 111

Monson Hayes

Russell M. Mersereau

Mark J. T. Smith

Texts in this series include:

Introduction to Digital Signal Processing: A Computer Laboratory Textbook
by Mark J. T. Smith and Russell M. Mersereau

Digital Filtering: A Computer Laboratory Textbook
by Russell M. Mersereau and Mark J. T. Smith

Spectral Analysis: A Computer Laboratory Textbook
by Monson Hayes

Speech Coding: A Computer Laboratory Textbook
by Thomas P. Barnwell III, Kambiz Nayebi, and Craig H. Richardson



Foreword

After spending decades in the research laboratory, digital signal processing (DSP) is now
emerging to make a significant impact on many areas of technology. As a result, DSP is
becoming a basic subject in the electrical engineering curriculum. Although numerous
textbooks and reference books are available to present the theory and applications of
DSP, few of these books provide much in the way of “hands-on” experience that can
help a student translate equations and algorithms into insight.

Experience during the past fifteen years at the Georgia Institute of Technology in
using computers with both basic and advanced courses in DSP has shown that the per-
sonal computer can be an extremely effective learning aid when it is combined with
well-designed exercises and effective software support. The Georgia Tech Digital Sig-
nal Processing Laboratory Series builds on this teaching experience to provide a set
of computer laboratory books that can be used either to supplement traditional class-
room/textbook presentations of the subject or as a self-study aid.

The value of computer-based laboratory experience is clear. However, just what this
experience should be is somewhat dependent on the computer resources available and
on the computer skills of the students. The following three approaches have proved to
be effective:

1. Provide the student with a program or set of programs that perform specific DSP
functions. In this situation, exercises are necessarily limited to running the pro-
grams on test data and observing the results.

2. Provide the student with a set of exercises that can be carried out by using a
set of macros or low-level functions that can be strung together in some sort of
convenient software environment. This approach has the virtue of flexibility and
is much less restrictive.

3. Provide the student with test data and suggestions for projects to be carried out with

v



vi Foreword

whatever programming resources are available. Clearly, this is the least restrictive
approach, but is the most demanding of the student’s programming/computer skills.

The first approach is likely to be frustratingly limited for students who are learning
fundamental concepts, but it is very appropriate when the goal is to demonstrate complex
algorithms that would require a great deal of time if students were to implement them
on their own. For example, digital speech processing systems often combine many basic
DSP functions and often have many parameters whose effects can only be illustrated
and studied by using an elaborate program. Another example is filter design, where
students can learn the properties of different approximation methods by simply applying
those methods to the same set of specifications. At the opposite extreme is the third
approach, which is obviously most suited for advanced courses or independent study
where appropriate computer programming skills can be required. The second approach
is perhaps the best compromise for developing insight into the fundamental algorithms
and concepts of DSP. The book Digital Filtering: A Computer Laboratory Textbook,
is based on primarily this approach and is the second book in the Georgia Tech Digital
Signal Processing Laboratory Series. It addresses the set of topics related to filter design,
implementation, and analysis and is a follow-on to the first book Introduction to Digital
Signal Processing: A Computer Laboratory Textbook.

Digital Filtering includes more than 170 exercises that can be carried out under DOS
using carefully designed software provided with the book. This software has a wide range
of basic operations, a large set of filter design functions, and a structure that allows these
functions to be strung together to perform more complex functions. At Georgia Tech,
this computer laboratory mode of operation has been underway for several years. Student
response to both the software and the exercises has been extremely favorable. Students
appreciate the ease with which they can begin to actually do something with what they
are learning in the classroom.

There is no doubt that DSP education is moving toward the greater use of computers.
Indeed, few subjects in the electrical engineering curriculum are so well suited to the
use of computers in instruction. The Georgia Tech Digital Signal Processing Laboratory
Series, whose authors have many years experience in teaching and research in the DSP
field, is a valuable contribution to this emerging trend in electrical engineering education.

Ronald W. Schafer
John O. McCarty Institute Professor
Georgia Institute of Technology



Preface

Filter design is an important topic in the area of discrete-time processing. There are many
digital signal processing textbooks that present a good discussion of the theory, provide
a variety of illustrative examples, and include a wide selection of homework problems
related to the major topics. The purpose of this book, however, is somewhat different.
It is to provide hands-on exposure to digital filter design in a computer environment.
It can be used to complement a digital signal processing (DSP) text, as the text for an
introductory laboratory course in digital signal processing, or as a self-paced introduction
to DSP basics.

The book includes a library of DSP computer functions that run on personal computers
using the DOS operating system. The philosophy underlying this text is to provide the
DSP newcomer with the experience of working with complex design formulas and design
algorithms without having to write and debug large programs. Computer-based exercises
have been a very important component in the digital signal processing course offerings
at Georgia Tech and strongly contribute to an enriched understanding of the material.

This book is the second in a two-part sequence that focuses on the fundamental
concepts of digital signal processing. The first book, Introduction to Digital Signal Pro-
cessing: A Computer Laboratory Textbook, covers linear systems, the discrete Fourier
transform, sampling, the z-transform, the DFT and FFT, and certain other topics. This
text is a continuation and is devoted to digital filters, digital filter design, and filter
implementation. It assumes that the reader is familiar with most of the topics covered
in the first text. Each chapter begins with a brief summary of the fundamentals on its
topic. These discussions are followed by a set of illustrative exercises that provide a mix
of theoretical, experimental, and design problems. Many of the problems are straight-
forward, and their solutions can be verified easily and quickly by using the computer.
The exercises also include a number of more difficult problems to challenge the learner.
Certain exercises can be selectively omitted without a loss of understanding, according

vii



viii Preface

to the reader’s level of familiarity with and interest in a particular topic.

The text is organized so that proceeding through the initial chapters and exercises
in order provides a smooth introduction to the software that is used throughout the text.
The presentation is most effective when chapters are selected in order but chapters may
be selectively omitted without loss of continuity. It is suggested, however, that Chapter
1 be reviewed first. It reviews the fundamentals of FIR and IIR filters, establishes
the notation, and provides an introduction to the software. Chapter 2 treats FIR filter
design. It includes discussions and exercises on window design, the Remez exchange
algorithm, and the Parks—McClellan algorithm. Chapter 3 introduces classical analog
filter design methods, analog frequency translation, a variety of analog to digital filter
conversion methods, and digital frequency transformations. Chapter 4 discusses allpass
filters, their properties, and some fundamentals of multirate filtering. Chapter 5 is devoted
to filter structures and implementation issues. Coefficient quantization, roundoff errors,
and limit cycles are treated in some detail. The final chapter of the book is a collection
of projects. These use the concepts and techniques discussed throughout the text to solve
specific problems. A topical reference chart is included in this preface that shows how
the chapters in this book and its predecessor would best complement those in several
commonly used DSP textbooks.

The software used in this book is included on the enclosed disk. There are three basic
executable programs: f.exe, which contains a diverse set of elementary signal processing
and filter design functions; g.exe, which contains all of the display graphics functions;
and helpf.exe, the on-line help for the f and g functions. The software will generally
run on any personal computer that supports the DOS. It has been primarily tested on
IBM PS/2 and HP Vectra PC systems. It is strongly recommended that the computer
supporting the DSP software have a floating-point coprocessor. The programs will also
run more efficiently if all of the software and data files reside on a hard disk. The
graphics functions should operate properly on most EGA-, CGA-, and VGA-equipped
machines.

In the development of this laboratory text we were fortunate to have received valuable
feedback from colleagues and students at Georgia Tech in the United States and Georgia
Tech Lorraine in France. We gratefully acknowledge Prof. James McClellan for his
contributions to Chapter 6 and Dr. Steven L. Eddins for his development of the early
core set of computer programs that evolved into the present software. The software has
undergone much revision and modification during the course of its development. We are
indebted to Mr. Faouzi Kossentini and Mr. Wilson Chung who over the last few years
have revised, maintained and expanded the software as the book developed. We would
like to gratefully acknowledge the following reviewers for their suggestions on changes
and improvements in the manuscript: Matt Yeldin, University of California, Berkeley;
Ernie Baxa, Clemson University; Enrico Del Re, Universita Delgi Studi Di Firenze;
Frederick J. Harris, San Diego State University; and Janet Slocum, Tufts University.
Finally, we would like to thank our wives Martha Mersereau and Cynthia Y. Smith and
our children Adam and David Merserecau and Stephen, Kevin, and Jennifer Smith for
their steadfast love and support over the years.

This book and its companion were written to be laboratory texts and not to be the



Preface ix

primary text in a lecture course. Several popular primary texts are listed below. These
can be relied upon for more complete discussions, examples, and derivations of the key
results that we have only summarized. The tables indicate which chapters in the primary
texts provide overlapping coverage with the chapters in these two laboratory texts.

[1] L. B. Jackson, Digital Filters and Signal Processing, (2nd), Kluwer Academic Pub-
lishers: Boston, 1989.

[2] R. Kuc, Introduction to Digital Signal Processing, McGraw-Hill: New York, 1988.

(3] L. C. Ludeman, Fundamentals of Digital Signal Processing, Harper and Row: New
York, 1986.

[4] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

[5] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall: En-
glewood Cliffs, NJ, 1975.

[6] J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Processing, Macmil-
lan: New York, 1988.

[7]1 R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison-Wesley: Reading,
MA, 1987.

[8] R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal
Processing, Addison-Wesley: Reading, MA, 1988



X

Preface

Intro. DSP (Smith & Mers.) | Ch.1 | Ch.2 | Ch.3 Ch4 | Ch.5 Ch.6
1) Jackson _— Ch.2 | Ch4 Ch.6 | Ch.3 Ch.7
2) Kuc —— | Ch.2 | Ch3 Ch.3 | Ch.5 Ch4
3) Ludeman —_— Ch.1 | Ch.1 Ch.1 | Ch.2 Ch.6
4) Opp. & Sch., 1989 —— | Ch.2 | Ch.2,5 | Ch.3 | Ch4 Ch.8,9
5) Opp. & Sch., 1975 —— | Ch.1 | Ch.1 Ch.1 | Ch.2,4 | Ch.3,6
6) Proakis & Manolakis — | Ch.2 | Ch4 Ch.1 | Ch.3 Ch.9
7) Roberts & Mullis —— | Ch.2 | Ch4 Ch.4 | Ch3 Ch.4,5
8) Strum & Kirk — | Ch.3 | Ch4 Ch.2 | Ch.5,6 | Ch.7,8
Dig. Filters (Mers. & Smith) | Ch. Ch.2 | Ch. 3 Ch. 4 Ch. 5

1) Jackson — Ch. 9 | Ch. 8 Ch. 13 | Ch. 5, 11
2) Kuc —_ Ch. 9 | Ch. 8 —_— Ch. 6, 10
3) Ludeman —_— Ch.3 | Ch. 34 | — Ch. 6, 10
4) Opp. & Schafer, 1989 —_ Ch. 7 | Ch. 7 Ch. 10 | Ch. 6

5) Opp. & Schafer, 1975 — Ch. 5 | Ch. 5 — Ch. 4,8
6) Proakis & Manolakis — Ch. 8 | Ch. 8 —_— Ch. 10, 7
7) Roberts & Mullis —_ Ch. 6 | Ch. 6 —_— Ch. 9, 10
8) Strum & Kirk —_ Ch. 9 | Ch. 10 | — Ch. 11




Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
23
2.4
2.5
2.6
2.7

3.1

Getting Started . . . . . .. ...
Writing and Using Macros . . . . .. .. ... ... .. . ... ...
FIR and IIR Filters . . . ... ... .. ... ... . . . .. . . .

Frequency Selective Filters

The System Function and Frequency Response . . . . . ... ... . . .

Differentiators and Hilbert Transformers

FIR Filter Design

Linear-Phase Condition . . . . .. ... ... .. .. . .. ..

FIR Designs Using Windows

FIR Design by Frequency Sampling . . . . . ... ... . .. .. . .
Equiripple Designs . . . . . . .. ... ... ... ...

Maximally Flat Designs
Adaptive FIR Filters

Nonlinear Filtering . . . . ... ... .. .. .. . ... . .. . . .

IIR Filters

Analog Filter Design . . . . . .. ... . ... . ... . ... .

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6

Analog Butterworth Filters
Analog Bessel Filters . . . . ... .. ... . . . . .
Analog Chebyshev I Filters . . . . . ... ... .. . .. . . .
Analog Chebyshev Il Filters . . . . . . .. ... . . . . . .
Analog Elliptic Filters . . . . . . . ... ... . .. .. .

xi



xii

Contents

3.3 Analog-to-Digital Transformations . . . . . . . . . . ... ... .. ...
3.3.1 Impulse Invariance . . . . . . . . ... ...
3.3.2 The Bilinear Transformation . . . . . . . . . . ... ... ....
3.3.3 The Matched z-Transform . . . . . . . . . .. ... ... ....

3.4 Digital Frequency Band Transformations . . . . . . .. ... ... ...

3.5 A Complete Design Procedure . . . . . . . ... .. ... ........

Allpass and Multirate Filters

4.1 Allpass Filters . . . ¢ . ¢ v o vt om v v v v v v b v e e e

42 Multirate FIliers  : « & s som @ w5 % ¢ 6 ¢ 6 5 5 5 5 5 5 & 5 0w w e ow e
4.2.1 Polyphase Filters . . . . . .. ... ... ... ...,
422 Subband Decompositions . . . . . . ... ...
4.2.3 Multirate Frequency Selective Filters . . . . . . . ... ... ..

Filter Structures

5.1 Flow Graphs and Basic Filter Structures . . . . . . .. ... .. ....
5.2 Realizing StruCtUres « « s o o 5 + ¢ 5 = = « = = = o ow @ @ ww w0 o oo
5.3 Coefficient Quantization . . . . . . . . . . . .. ...
5.4 Finite Precision Number Representation . . . . . . . .. . .. ... ...
5.5 Roundoff Effects in Filter Implementation . . . . ... ... ... ...
5.6 Overflow Effects and Scaling . . . . . ... ... ... ... ......
5.7 LimitCycles . . . . . . . . ..
6.1 Nuttall-Bessel Filter Design . . . . . . . . .. . .. ... ... .....
6.2 Weighted Least-Squares FIR Design. . . . . . .. ... ... ......
6.3 Quantization of Oversampled Signals . . . . . . .. ... ... ... ..
6.4 Ideals for Window Designs . . . . . . . . .. ... ... . ...
6.5 Multistage Interpolator . . . . . . . .. ..o
6.6 Multirate Filter Implementation . . . . . . . ... ... .........
6.7 Octave-Band Spectrum Analyzer . . . . . . .. .. ... ... .....
6.8 Single Sideband Modulation . . . . .. .. ..o

Appendix
A.1 Quick Reference for DSP Functions . . . . . . ... .. ... ......
A.2 DSP File Structure . . . . . . . . . ...

Index

111
111
123
125
133
139

147
148
155
163
170
173
180
184
191
193
195
197
199
201
203
206

211
211
218

221



Introduction

Digital filters can be used in a wide variety of applications, including separating signals
from noise, compensating for linear distortions, separating signal components that have
been added together, and modeling many classes of signals. This book presents a series
of computer exercises in digital filtering to acquaint you with a number of filter design
techniques and methods of filter implementation. It comes with custom DSP software
that will allow you to design filters, study design algorithms, and study many types of
digital filters without having to write programs. Although many of the fundamentals are
discussed in this book, it is not intended to be a basic text in digital signal processing or
in digital filtering. Instead, its goal is to supplement such a text by providing a hands-on
“computer laboratory” experience.

This chapter has two purposes; first, it reviews some basic concepts related to digital
filters while establishing the notation used throughout the book. It also provides a smooth
introduction to the use of the software. Chapters 2 and 3 present a series of tutorial
exercises on various aspects of FIR and IIR filter design, and Chapter 4 looks at some
more advanced topics concerned with allpass and multirate filters. Chapter 5 explores
alternative implementations for digital filters and carefully examines quantization and
overflow effects that can occur in fixed-point hardware realizations. The text concludes
with a series of design projects in Chapter 6 that are more lengthy in nature and require
a higher level of thought and creativity.

1.1 GETTING STARTED

In this text, signal processing operations are presented in a hands-on personal computer
environment that can create and display signals with only a few commands. To get
started you will need the following:



2 Introduction

e An IBM-compatible personal computer. A computer with at least an 80286 or
80386 microprocessor is preferred, although not necessary. It is also recommended
that the computer contain a floating-point co-processor. This will increase the speed
of the software dramatically.

e A hard disk. Since files will be created routinely when you do the exercises, it is
suggested that a few megabytes of disk be available in your working directory.

e The MS-DOS operating system or its equivalent.
e Either CGA, EGA, or VGA display capability.

e The computer should contain a minimum of 640 kbytes of random access mem-
ory. Since the DSP software uses a sizable part of this memory, avoid running
other memory resident programs during your work session with the software. The
presence of these programs in memory reduces the memory available to the DSP
software and may cause errors.

A standard ASCII text editor is also useful. It will allow you to write macros and to
edit DSP files. In Chapter 6, which is the projects chapter, and in two optional problems
in Chapter 5, you are asked to write computer programs. In such cases, you will need a
compiler for the programming language in which you wish to work.

A print-screen program that allows you to make hard copies of the graphics displayed
on the screen might also be useful in some cases, but is not necessary. The DSP software
does not provide the capability to print graphics outputs. You will generally be asked to
draw sketches of signals that are displayed on the screen.

To begin, create a DSP directory on your hard disk and copy all of the files on
the enclosed diskette into that directory. Go into the DSP directory and type install.
The programs and files provided on the disk are stored in a compressed format on the
diskette. Typing install uncompresses the software. It is recommended that you copy
these programs and files to a backup diskette as a safeguard in case they are accidentally
deleted or overwritten.

You may do all of your work in this DSP directory. However, you may find it more
convenient to work in another directory, thereby keeping your working files separate
from the DSP software. Such a setup can be created by modifying your search path in
DOS. Your DOS manual contains detailed information about customizing the operating
environment for your computer.

There are two main programs in the software that contain DSP functions: f.exe,
which contains filter design and signal processing functions; and g.exe, which contains
graphics and display functions. The functions in f.exe can be used to do simple operations
such as adding, subtracting, or multiplying signals as well as to perform more complex
operations such as filter design, multirate filtering, and quantization simulations. Each
function in this set can be invoked by simply typing f followed by the function name
(e.g., f add, f subtract, f multiply).

The functions in g.exe allow you display signals in the time domain, z-plane, and
frequency domain. These graphics functions are invoked by typing g followed by the
function name. A list of the basic functions for this book is provided in Table 1.1.



Getting Started

Table 1.1. List of DSP Software Functions.

f functions
f abessel f abutter f achebyl f acheby2
f adaptfir f add f aelliptic f atransform
f bartlett f bilinear f blackman f cartesian
f cas f cexp f convert f convolve
f diff f directl f direct2 f divide
f dnsample f dtransform f eformulas f extract
f fdesign f fft f filter f gain
f hamming  f hanning f hilbert f histogram
f ideallp f ifft f imagpart  f impinv
f kaiser f kalpha f Iccde f log
f Ishift f mag f matchedz f maxflat
f median f multiply f nlinear f obutter
f ochebyl f ocheby2 f oelliptic f par
f phase f pksmcc f polar f qcyclic
f quantize f rank f realpart f reverse
f revert f rgen f rootmult f rooter
f siggen f snr f subtract f summer
f truncate f upsample f zeropad

g functions
g afilspec g afreqres g apolezero g dfilspec
g dtft g look g look2 g polezero
g slook2 g sview2 g view g view2

Working with the software is very simple and does not require knowing much in
order to get started, but there are several things that we should point out before you
begin. First, signals (or sequences) are stored in files. Their content may be examined
at any time by simply printing them on the screen, ie., by entering type followed by
the filename. As an example, try typing f001, which is a file provided for you on disk.
After pressing the enter key, the file content will be displayed. Observe that the first
five lines of the file provide information about the signal while the numbers that follow
are the sequence values. This file format is convenient for modification because the file
information is self-explanatory. Using a text editor, you can change coefficient values if
desired as well as add or delete coefficients. In the case of the latter, the filter length
and numerator order parameters would have to be changed appropriately. As another
example, consider the file impulse, which contains the unit sample, d[n]. It is used as
an input signal in many of the exercises. Type this file to the screen and observe that
it contains only one sample. The fact that the starting point is zero means that the unit
impulse occurs at n = 0.

Second, whenever you are in doubt about what a particular function does or how to
use it, simply type helpf for an on-line description of the functions in f.exe and g.exe. Try
typing helpf now. It will display a list of all the functions available. To obtain detailed
information about a particular function listed, type helpf followed by the function name.



4 Introduction

Try typing helpf add for an example of the on-line help feature.

Third, the graphics and display functions are all contained in the g.exe program.
When a plot is being displayed, pressing the “esc” key will return you to the main
menu, or in those cases where there is no main menu, it will return you to the operating
system. Pressing the “q” key exits the program. As an example, try typing g view f001,
which will display the sequence stored in fOO1. There are two graphics functions that
are slightly different: g polezero and g apolezero. These are completely menu driven
and prompt you for all information.

Fourth, IIR filters (which are discussed later in this chapter and in Chapter 3) have
the form H(z) = B(z)/A(z). These files are stored with the numerator and denominator
coefficients listed separately. To illustrate this, type f003 to the screen and observe that
the numerator and denominator coefficients are easily identifiable. More is said about
the file structure for IIR filters in Exercise 1.4.4.

Fifth, to invoke any of the DSP functions, just type the function name. You will
then be asked for any required arguments, such as the name of the input file, the name
of the output file, and any appropriate function parameters. Alternatively, these can be
included on the command line as shown below:

f function argl arg2....

The ordering of the arguments will vary from function to function, but normally the
input file(s) are listed first, followed by the output file(s), and then any floating point or
integer parameters that are required. The program will ask for any arguments that you
omit. For example, consider the function f add, which has two inputs and one output.
Assume that z[n] is the signal stored in the file f001. The operation

yln] = z[n] + z[n]

can be implemented by typing
fadd 001 f001 yn

where yn is the output file containing y[n]. Try this and then display yn using g view.
Remember that the “esc” or “q” keys will allow you to exit the function.

Finally, sequences can be complex valued. Complex numbers are stored as ordered
pairs containing the real and imaginary parts. For example, the complex number 2.5+55.3
is represented by the pair 2.5 5.3. Notice that the real and imaginary parts are separated
by a space. Manipulating complex sequences is similar to manipulating real ones. For
example, the operation

ylnl = @2 +j2)x[n]
can be realized using the f gain function. Type

f gain f001 yn
where again we assume z[n] is the signal contained in f001. You will be prompted
for the value of the gain. Specify 2 2 corresponding to the complex number 2 + j2.
Alternatively, the value of the gain can be specified on the command line by typing

fgain vn yn 2 2
Try displaying yn using g view. Notice that now a menu appears requesting options
regarding how you wish this complex sequence to be displayed.



