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. PREFACE

The present volume contains the more advanced parts of the
differential and integral calculus, dealing mainly with functions.
of several variables. As in Volume I, I have sought. to make
definitions and methods .follow naturally from intuitive ideas

and to emphasize their physical interpretations—aims which
are not at all incompatible with rigour. :

I would impress on readers new to the subject, even more
than I did in the preface to Volume I, that they are not expected
to read a book like this consecutively. Those who wish to get a
rapid grip of the most essential matters should begin with
Chapter II, and next pass on to Chapter IV; only then should
they fili ir the gap: by reading Chapter III and the appendices
to the various chapters. It is by no means necessary that they
should study Chapter I systematically in advance.

The English edition differs from the German in many details,
and contains a good deal of additional matter. In particular,
the chapter on differential equations has been greatly extended.
‘Chapters on the calculus of variations and on functions of a
complex variable have been added, as well as a supplement on
real numbers. '

I hawe again to express my very cordial thank to my German
publisher, Julius Springer, for his generous attitude in con-
senting to the publication of the English edition. I have also
to thank Blackie & Son, Ltd., and their staff, especially Miss
W. M. Deans, for co-operating with me and my assistants and

relieving mo of a considerable amount of proof reading. Finally,
. v



vi ’ PREFACE

I must express my gratitude to the friends and colleagues
* who have assisted me in preparing the manuscript for the Ppress,
reading the proofs, and collecting the examples; in the first place
to Dr. Fritz John, now of the University of Kentucky, and to
. Miss Margaret Kennedy, Newnham College, Cambridge, and also
to Dr. Schénberg, Swarthmore College, Swarthmore, Pa.

R. COURANT.

Nzw Roomrrre, Nxw YoRk. :
- March, 1936. : -
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| CHAPTER I
Preliminary Remarks on Analytical
Geometry and Vector Analysis

In the interpretation and application of the mathematical facts which
. form the main subject of this second volume it is often convenient to use
the simple fundamental concepts of analytical geometry -and vector
analysis. - Hence, even though many readers will already have a cértain
knowledge of these subjects, it seems advisable to summarize their elements
in a brief introductory chapter. This e ‘
«chapter, however, neéd not be studied
before the rest of the book is read; the
reader is advised to refer to"the faots "
collected hete only when' he finds ‘the
need of them in studying the later parts -
of the book. . Bt

IAN

1. RECTANGULAR CO-ORDINATES
AND VECTORS

1. Co-ordinate Axes.

To fix a point in a plane or in space,
as is well known, we generally make use
of a rectangular co-ordinate system. In
the plane we_take two perpendicular x e
lines, the z-axis and the y-axis; in space Fig. 1-~Co-~ te axes in space
we take three mutually perpendicular g i
lines, the z-axis, the y-axis, and the z-axis. Taking the same unit of

length on each axis, we assign to each point of the plane an z-co-ordinate
and a.y-co-ordinate in the usual way, of to each point in space an
z-co-ordinate, a y-co-ordinate, and a z-co-ordinate (fig. 1); Conversely,
to every set of values (z, y) or (2, y, z) there corresponds just ‘ohe point
of the plane, or of space, as the case may be; & point’ is’ completely
determined by its co-ordinates. . I PRl DR
* . Using the theorem of Pythagoras we find that the distance between two
oints (2, ¥;) and (25, ya) s given by N el el
vV (@ — 2Py = Gahs T T
L RS {3 17 5)
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while the distance between the points thh co-ordinates (z,, % 2;) and
(%o Yo, %) i8

r=V(5, — %) + (% — %) + Py

In setting up a system of reot.angular axes we must pay attentzon to
the orientation of the co-ordinate system.
In Vol. I, Chap. V, § 2 (p. 268) we distinguished between positive and

-

1[![ AR LT AT
- -2 ‘ e
o 0 .. 4
. Fig, 2.~~Right-handed systems of axes _ Fig. 3.—Left-handed syster of axes

negative senses of rotaticn in the plane. The rotation through 90° which
- brings the positjve z-axis of a plane co-ordmate ,system into the position of
the positive y-axis in the shortest way defines a sense of rotation. According
as tlns sense of rotation is positive or negative, we say that the system of
axes is right-handed or left-handed (ct. figs. 2 and 3). It is impossible to
change a right-handed system into a left-handed system by a rigid motion
confined to the plane. A similar distinction oceurs with co-ordinate systems

)2

Fig. 4—Right-handed screw . Fig. 5.—Left-handed screw

m spa.c'e.' For if one imagines oneself standing on the zy-plane with one’s
head .in the dh'ectmn‘ of the positive z-axis, it is possible to distinguish
two types of co-ordinate system by means of the appa.rent oriéntation of
the co-ordinate system in the 2y-plane. If this system is right-handed the
system in space is also said to be right-handed, otherwise left-nanded
{cf. figs. 4 and 5). A right-handed system corresponds to an ordinary right-
handed screw; for if we make the xy-plane rotate about the z-axis (in the
sense preseribed by its orientation) and simultaneously give it & motion
of translation along the positive z-axis, the combined motion is obviously
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that of a right-handed screw Snmla.rly, a left-handed system corrasponda
to a left-handed screw. No rigid motion in three dimensions can tmnsform
a left-handed system into a nght-handed system. '

" In what follows we shall always use right-handed systems of axes.

‘We may also assign an orientation to a system of three arbitrary axes
passing through one point, provided these axes do not all lie in one pline,
just as we have done here for a system of rectangular axes. e

2. Directions and Vectors. Formulse for Transforming Axes.

An oriented line / in space or in & plane, that is, a line traversed in a
definite sense, represents a direciion; every oriented line that can be made
to ccincide with the line ! in position
and sense by displacement parallel to
itself represents the same direction. It
is customary to specify a direction rela-
tive to a co-ordinate system by drawing

" an oriented half-line in the given direc-
tion, starting from the origin of the
co-ordinate system, and on this half- :
line taking the pomt with co-ordinates Fig. 6.—The angles which a straight
(2 B, y) which is at unit distance from T e, yricl O e

“the origin. ‘The numbers a, 8, y are
called the direction cosines of the direction. They are the cosines of the
three angles 3,, 8;, 3, which the oriented line [ makes with the positive
z-axis, y-axis, and z-axis* (cf. fig. 6); by the distance iormula they
nahmfy the relation :

S+ B+ y=1

If we restrict ourselves to the zy-pline, a direction can be specified by
the angles 3,, 8, which the oriented line ! having this direction and
passing throngh the origin' forms with the positive z-axis and y-axis; or
by the direction cosines a = cos8;, B = oossp which satmfy the equation

Let4 p¥=1

A lme-segment of given length and given direction we shall call a
vector; more specifically, a bound vector if the initial point is fixed in space,
andafrecwotorlfthepomtxonofthenutmlpomtmmmatenal -In the
following pages, and indeed throughout most of the book, we shall omit
the adjectives free and bound, and if nothing is said to the contrary we
shall always take the vectors to be free vectors. We denote vectors by
heavy typs, .. @, b, ¢, x, A. Two tree vectors are said to be equal if
one of them caw be made to coincide with the other by displacement
. parallel to itself. We sometimes call the length of a vector its absolute

value and denote it by | @ |. '

. 'I'he angle which one oriented line forms' with asother may a.lways be
taken as being between 0-and =, for in wbat follows only the cosines of sach
angles will be considered.
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oo H fmm the nntlal and final peints of a vector v we drop perpen-
&mhhmohanonentedhnel we. obtain anonente(fs'egment on ! corre-
Spondmg to the vector. I the onentataon of thls segment ie the same aa
that oi l, we call its. length the ' component of © in the du‘ectwn of I;- if the
orientations .are oppomte, we call the negative
of the length of the segment the oompcment of v
“in the direction of I. The component of v in the
direction ‘of [ we denote by v,. If 8is the angle:
between . the direction of v and that of l (of.

* fig. T) 'wei abways bave T £

k—-wrwsd’ ’ [ § g X e,—-lvjcos&

Fig. 7.—Projection of a vector A Seotos x.of length 1 i8 called a unit vector ‘
_ Its component in; a- direction I is equal to the
cosine of the angle between [ and v. The components of a vector v in.the.
directions of the three axes of a co-ordinate system are demoted by,
Uy, Vg ¥g If We traszer the initial point of v to ‘the ongm, we see that

'”’—’../ *4-0g’+vs- :

Iim, B,ya,rethedmactmncomnesofthedireutmnnf U, then

':.’.'”1'—]”'“- "z"l”lﬁ» 9a—~|”|Y a

A free vector is oompletely determ.med by lts con.‘.ponents ¥y v,, vgs

An equaim .- o B ,
T ¥ L Y Tt
between two veebors is tharefore eqmvalent 170 the three onimnry eqnaﬁom
.‘;1/ wv .
: s o Ed "’v !
el 5 § B Wi '.II.--w‘- ,

There are two dlﬂ?erem masons why ‘the 1 use of veotors is na.tural a.nd_

Lo ar(bre)=(arb)+e

i ﬂg; S—CommuMVe law of vector & Fxg 9. —Assocumve law of vector
don . addition

ndva.nta.geous Firstly, many géome&uoﬁl conoepts, and a still gres,tar
number of physical concepts, sudh as force, velocity, acceleration, &e.,
unmodmteLv reveal themselves as vectors independent of the particular
co-ordinate system. Second..y, we can set up snnple rules for ca.loula.tmg
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with veotors snalogous to: the rules for calcula.tmg with ogdj:nary numbers;
by means of these many a.rgumenia can be developed in a nmple way,
independently. of the particular co-ordm&te gystem chosen.

We begin by defining the sum of the two vectors @ and &. For this
purpose we displace the vector & pazallel to itself until its initial point
ooincides with the final point f @. Then the initial point of @ and the
final point of & determine a new vector ¢ (see fig. 8) whose initial point -
is the initial point of @ and whose final pomt 1.s ‘the ﬁna.l pomt of b We

':ca.l}cthemmocfaandbandwﬂte K

- _‘va-f—bc.

: Fm' tlns addmve process the oommutahw law g
s % ¢+b b+0 :

and the qaaocumve Iaw  ‘_ » Ap
a+(b+c)—(a+6)+c=a+b+c

obvmusly hold, as & gl&nce at figs; 8 and 9 shows.
" "From the definition of vector addition we at once obtain th’e «“ pmjeo—
“tion ‘theorem ¢ the component of the sum of two oF more vectors in & diregtion
4 uequaltothemmoftheeomponeﬂsofﬂwmdmdmlmtonmthatdm
tion, that is,
(a + o)y = + b;

In particular, the components ofa + b in the du‘ectwns of t.he oo-ordma‘be
axes are a; + by, a3+ bv“s‘i'bn

To form the sum of two vectors we a.ccordmgly have the following
simple rule. The components of the sum are equul io the sums of the corre-
apondmg components of the summands. . i

... Ewery point P with co-ordinates (z; ¥, 2). may be determined by the

poamon vector from the origin to P, whosé components in thé directions of
the axes are just the co-ordinates of the point P. We take three unit
vectors in the directions of the three axes, e, in the z-direction, e, in the
y-direction, ez in the z—dxrect.xon H the vector v has the components
V1 Uy v., then

18 Do o vﬂvae;+vge.+vaea

.E‘We ea.ll vl = v,e,, o, = V,8,;, Use= Vg ‘the vector componmu of [ S
Using the projection theorem stated above, we easily obtain'the frans-
formation formule which determine (2, i/, 2’), the co-ordinates of a given
point P with respect to the axes O, Oy, O, in terms of (z, y, 2), its co-
ordinates with respect o anotht set * of axes Oz, Oy, Oz which has the
same ovigin as the first 88t and may be obtained from it by rotation. The
. three new axes form angles with the three old axes whose ‘oosines may be

‘Itutobonotedthatmmordamsthhthaconmﬁontdophdon
prptbmtemsofmmtobonght—hmded. g
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' expr'esséd by thie following scheme, where for e'ii_ixipl‘e y; i8 the cosine of
the angle between the 2’-axis and the z-axis: ~ e
dar w0 o l=lyle
ol Biln
LAEINART _
2 “losl Bslve ,
From P we drop perpendiculars to the axes Oz, Oy, Oz, their feet being
P, P, P, (cf. fig. 1, p. 1). The vecior from O to P is then equal to
the sum of the vectors from O to Py, from O to P, and from O to Pj. The
direction cosines of the 2’-axis relative to the axes Oz, Oy, Oz are aj, By, Yrs
those of the y’-axis &g, By, Yg and those of the z"-axis «g, B3 Y- By the
projection theorem we know that ', which is the component of the vector

6—;‘ in the direction of the x’-axis, must be equal to the sum of the com-
—-> > > :
- ponents of OPy, OP,, OP4 in the direction of the «’-axis, so that
o= oz + By + 1z,

for a,z is the component of z in the direc‘yion of the :_c’-axié, and soon.
Carrying out similar arguments for y” and 2/, we obtain. the iransformation
formule - . 3 . E . :
o=z + By + 12
Y =02 + By + 12

¥ =@ + By + Y%

= o2’ + &y + a?
= B + By + B
2=+t Ye#

Since the components of a bound vecter v in the directions of the axes

and conversely

@y

are expressed by the formulse ' ;
' ' h=Tp— %
=Y — Y
. Vg =2 — 2y

in which (z,, ¥y, %) are the co-ordinates of the initial point and (25 ¥y, z)
the co-ordinates of the final point. of v, it follows that the same trans-
formation formule hold for the components of the vecior as for the
co-ordinates: . ‘ :
v = oo + Byva + 1%
- vy’ = gty + Pave 1 Ya¥s
' (05" = asty + Bsts + Yovs

3. Secalar Multiplication of Vectors.

Following conventions like those for the addition of vectors, we now
define the product of a vector v by & number ¢: if v has the components
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vy, s, ¥y, then cv is the vector w1th ootqponents ¥y, CUp. CUg, - Tlna de-
finition agrees with that of vector additior, for v + v=2v, v+ v+t v
—=3v,andsoon. Ifc > 0, cvhasﬁhesamedxrechonasv,andlsoﬂangth,
e|v}; if ¢ < 0, the direction of cv is-opposite to the direction of v, and its
length is (—c)|v|. If ¢ =0, we see that cv is the zero veclor with the
components 0, 0, 0. o ’

We can also define the product of two vestors s and o, where this niultx-
plication * of vectors satisfies rules of calculation which are in part similar
to those of ordinary multiplication. There are two different kinds of
" vector multiplication. We begin with scalar multsplmmon, whmh is the
gimpler and .the more important for ‘onr: pufposes.

By the scalar product * uvoftheveaora " and vwemmntbeprodud
of their absoluie values and the cosine of the angle. 8 between. their directions:

uv = |u||v]|cosd.

The scalar product, therefore, is simply the component of one of the
vectors in the direction of the other multiplied by the length of the second '
vector. .

From the projection theorem the disirituiive law for multiplication,

(88 + v)w = nw | vw,

follows at once, while the commulative low,
%0 = Ve,

is an immediate consequence of the definition.

On the other hand, there is an essential difference between the scalar
product of two vectors and the ordinary product of two numbers, for the
product can vanish although neither factor vanishes.

If the lengths of 3¢ and v are not zero, the product uvvamalmu_f,
only if, the two veciorg 1 and v are perpendicular to one another.

In order to express the scalar product in terms of the components of
the two vectors, we take both-the vectors 2 and v with initial points at
the origin. We denote their vector components by ;, %, ; and
vy, Uy, Uy respectively, so that 2= u; + #; + uzand v = v, + v, + v,
In the equation %D = (26, + #, + 2%,)(¥; + v, + vs) we can expand the
product on the right in accordance with the rules of calculation which
we have just established; if we notice that the products zs,v,, w,us, 84,0;,
%,V5, 337, 8nd 26,0, vanish because the factors are perpendicular to one -
another, we obtain %90 = u,v; + %,v, + w,v;. Now the factors on the
right have the same direction, so that by definition u,2;, = v, &e.,
where u,, u,, g and vy, v, v, sre the components of #% and v respectively.
Hes i

%0 = w30y + gty + Uy

This equation could have been taken as the definition of the scalar product,
~and isan lmporm mle for caleulatmg the scalar product of two veoctors

* Often called the inner product.
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given in terms. Qf,tbeirfon?onpng& g Inpa.rtxeular,lf we take ¥ and. v as
. Bait vectors with direction cosings g, @y @y and B, f,, B, respectively,
the stalar product is equal o the cosine of the angle between #.and v, -
which is aocordingly ‘giyen bj.:{i_;_h‘e}{fdix’hi’ih_ e 3 e NET
¢ o o 0088= By + 3B, + %oy o B
- The physical meaming of the Acalar prodnot is exemplified bythe fact,

E i

proved in elementary physics, that a force # which moves a particle of upit

mass through the directed distance o does work afnounting to fo. .

4. The Equations of the Siraight Line and of the Plane, -
<"1t ‘& straight line in the’zy-plane or & plane in yz-space be given.
In order to find' their equations we erect a perpendicular fo the line (or

| ypo -

- 3 2
. ]

~
-

Fig. 10.—The equationt of a straight line

- the plane) and specify a definite”“positive direction alorg. the nérmal ,
perperdioulsr to the line (or plane); it does riot matter which of the two
postible directions is taken a8 positive (ef. fig. 10). The.vector with unit
lengthand the direction of the positive normal we denote by .  The points
of ‘the line (or plane) are tharacterized by the property that' the position

vector % from the origin to them hés a constant projection 5 on the dires-

- tion of the mormal; in other’ words, the scalar proddet of this position

- “veetor and the normal vector s is constent; If a, B (or o, B 'y) are ‘the -

direction cosines of the positive direction of the normal, that is, the com- .

DI ol pi! Loet SRR ORI BRI
is the required equation of the line (or plane). Here p has the following -
meaning: ‘the absolute value | | .of p is the distance of the line,(or plane)
from the origin. Moreover, p is positive.if the.line (or' pltrie) does not
‘pass through the origin and # is in the direction of the perpendicular
from the origin to the line (or plane) p is negative if the line (or plane)
does not pass through the origin and s has the opposite direction; p is
zato i, the live {or plane) passes through the origin. -Conversely; if «,
. (or e B, ) are direction cosines, this: equation represents a line (or:plane).

- ah a distance p from the origin, whose normal has these direction cosines,




