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FOREWORD

The GAMM-Committee for Numerical Methods in Fluid Mechanics
(GAMM-Fachausschuss fir Numerische Methoden in der Stromungs-
mechanik) organizes the GAMM-CONFERENCE ON NUMERICAL METHODS
IN FLUID MECHANICS every two years.

The previous four Conferences were held at the DFVLR in K&ln
(1975-77-79) and at ENSTA in Paris (1981). The fifth Confer-
ence was held at the University of Rome, October 5-7, 1983.
The GAMM-Conference is intended to bring together scientists
who are working on numerical methods in fluid mechanics. The
main objective is to foster exchanges between the various
fields of development of computational fluid mechanics such as
Aerodynamics, Hydrodynamics, Propulsion, Fluidmachinery, Nucle-
ar Reactor Technology, Meteorology, Biofluidmechanics etc.

The subjects covered in the Conference are mainly related to
theoretical aspects of numerical methods in fluid mechanics
(finite difference methods, finite element methods, spectral
methods, etc.) or to particular applications to fluid problems
which may enhance the novelties of the methods themselves.
Moreover reports are presented on the GAMM-WORKSHOPS promoted
by the Committee where very definite subjects have been inves-
tigated by scientists working in those particular fields.

The 1983 Conference was attended by more than 100 scientists
from 16 different countries. There were 48 contributed papers
and the activity on 4 GAMM-Workshops have been reported. The
contributions are here presented in alphabetical order accord-
ing to the first author.

The editors, who have also been the chairmen of this Conference,
would 1ike to acknowledge the support from the Faculty of Engi-
neering of the University of Rome and the Italian National Re-
search Council (C.N.R.) and to express their gratitude to all
colleagues and personnel of the University of Rome and the Po-
litechnic Institute of Turin for the cooperation in organizing
the Conference.

December 5, 1983

Maurizio PANDOLFI
Renzo PIVA
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ON THE NUMERICAL SOLUTION OF THE NAVIER STOKES EQUATIONS
FOR INTERNAL INCOMPRESSIBLE FLOWS IN THE PRESENCE OF FILTRATING WALLS

R. Albanese, F. Grasso, and C. Meola
Istituto di Gasdinamica
P.le Tecchio 80, Napoli, Italy, 80125

SUMMARY

A numerical algorithm has been developed to model a non standard bou-
ndary value Navier Stokes problem. The method is a variation of a scheme
developed by the authors,and successfully applied to the steady state problem
of two-dimensional incompressible laminar flow confined by permeable walls.
Such a method saves the implicit character of the pressure/velocity correla-
tion on the permeable boundary, thus yielding an accurate description of the
transient evolution of the phenomena. Moreover it reduces the stiffness of
the pressure matrix. The latter property suggests that the model can be ap-
plied as a regularization process for non permeable walls (provided that the
permeability constant approaches zero), leading to the concept of "artifi-
cial permeability".

INTRODUCTION

The numerical solution of viscous incompressible laminar flows, confi-
ned by permeable walls,was recently studied in a primitive variable formula-
tion by the present authors [1] . The particular boundary conditions impo-
sed along such walls (normal suction/injection velocity assumed to be propo-
rtional to the pressure jump across the permeable boundary) introduced a
strong coupling between velocity and pressure fields. The implicit character
of the problem was effectively bypassed by assuming a sort of delay time be-
tween pressure jump and velocity without affecting the steady state solution.
However the above approach with the assumed explicit pressure/velocity cor-
relation is not adequate to study the transient of the flow evolution and
is not suitable for an implicit numerical solution of the equations.

In the present work a modified algorithm has been developed by impli-
citly treating the coupling between pressure and velocity along the permea-
ble walls, so as to satisfy the implicit character of the particular bounda-
ry value problem. The proposed algorithm yields meaningful detailed informa-
tions during the transient of the phenomena.

A careful analysis of the physical and mathematical correlations be-
tween boundary conditions, continuity properties of the solution, and the
proposed numerical discretization, has shown that the present treatment of
this non standard boundary value Navier Stokes (BVNS) problem can also be
exploited for non permeable walls. This seems to lead to the concept of
"artificial permeability", in analogy with other regularization and/or opti-



mization techniques as the "artificial compressibility" of Chorin, the "ar-
tificial viscosity" of V.Neuman etc.

The method has been tested comparing the results with the ones obtai-
ned by the approach of Ref. [1] . In the present work the effects of the
gravity forces and the exit velocity and pressure boundary conditions on the
flow field have also been studied. Finally the applicability of the "artifi-
cial permeability" model has been tested for a driven cavity flow where the
velocity boundary conditions are exactly known.

THE MODEL

The model equations are:

v =R-wp+f
in Q (1)
B =0
where f represents the mass forces, and R = - v- Vv + vzl /Re.

Boundary conditions are:

v =V, on BQ, (2)
5V = Vg

on BQ, (3)
p =P,
n-v = kp

on Ba, (4)
s.v =0

The strong coupling between injection/suction velocity and pressure,
introduced by Eqn. (4) shows that the pressure field cannot be determined
only by a constant. Moreover if the effects of conservative external forces
are included in the pressure potential, then Eqns. (3)-(4) must be consequen-
tly modified.

NUMERICAL SOLUTION

According to the conclusions of Ref. [1] , the discretized governing
equations have been obtained following a finite volume approach. For rectan-
gular geometries the grid points have been evenly spaced in x and y with mesh
size Ax =Ay. The velocity components have been defined at the grid nodes,
the pressure at the center of the geometric cell.

For internal momentum cell (i,j) (centered around a velocity node)
the equations are:
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=u. - Hul) -(u+u ) +H(u. +u LA )= (w AU, ) (voAvL ) )+
4 4 a((%PJ lJ) (lJ 1mJ) (lJP lJ)(lJP lJ) (lJ IJU?(lJ JJJ)
n np_ np__np
+8(u Y RSy )-Za(p +p -p L) (5)
1p} 1mJ 1j 1jp 1jn 1) 1jm 1im) 1mjn
2 2
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PP v e AUt (v +v" )(u Ly J(v AV (v, ) =(v AL ) )t
iJ 1J 1ipj 14 ipd 130 T 1 1mi i imi® Cijp 1) 1j 1jm
n
we(v" + v e e -2 (p P E-p -t ) (6)
ipj imj 1J ijp ijm 1) 1mJ 1Jm 1mjm

For every mass cell but the ones along the permeable walls, the disc-
retized conservation equation is:

T R TS T U Y S

1pJ 1pJp 1J 11? 1JP 1PJP 1y JPJ

(7)

On cells adjacent to the permeable walls Eqn. (7) becomes:

n n 1 n
u ?+ 9 - XP— P+2
1pJ 1pJp 1J 1Jp

Ve, = vﬂp. on BQ, (9)
=13 = 29
sV = vsh

= on BR, (10)
pl’l}) - pnp
1j 4
u‘n-p i, 0
i on B, (11)
VP o= (k. p™P ek p™) /2
1) im imj 1 1]

From Eqns. (7)-(8) observe the different discretization of the

divergence operator along the permeable walls (consistent with a different
definition of the mass flux through such boundaries). Furthermore note the
implicit treatment of the filtrating boundary conditions.

In a quasi matrix form the governing equations are:

I -oB" O\ /v flenth 0 A v\® /¢
B Bpm Ot e | 0 0 Of-1P ¥Wlec, (12)
0 Mp I v 0 0 O Vv 0

where v, is the injection/suction ve]oc1ty, and C;5 C, account for boundary
conditions and external forces. A, B and B represent respectively the di-
scretized R, divergence and gradient operators (note that the adjoint cha-



racter of B and BT is maintained for the assumed discretization). The defini-
tions of Bpm and M, ("membrane flux" and "membrane permeability" matrices)
follow from Egns. (8),(11).

The solution of the system (12) requires the simultaneous solution of
pressure and velocity. Premultiplying Egn. (12) by the non singular matrix
T, defined as:

1 00
T ={\B 10
001

the following equation for p is obtained:
T 5 1=
(8tB-B + Bpm)-P™" = M-p™® = -B-(I+ath)-v"+c5 = q (13)

From the definitions of B, BT and Bpm, [M is shown to satisfy the fol-
Towing properties [2] : i) it is symmetric and positive definite; ii) with
an appropriate reordering (i+j even/odd) it can be reduced to a two block
diagonal matrix; i1ii) property A; iv) weak diagonal dominance (with strong
character for the rows along the permeable boundary).

Each of the two block matrices (], M') satisfies properties i),1i1)
and iv), hence is 2-cyclic in the sense of Varga [2] .

From definition of the pressure matrix [], Eqn. (13) is shown to be for-
mally consistent with the usual elliptic equation for p

Vp =9 (R+f) - Ty

. (14)

generally obtained by taking the divergence of the momentum equation [3] -
(4] .

The closure of Egn. (14) can be obtained by assuming that v satisfies
some smoothness properties so that Eqn. (1) can be extended to the boundary
by a Timit process, thus yielding boundary conditions in terms of pressure
gradient [1] , [5] , [ 6 ]. However such a naive procedure may lead to parado-
xes especially if pressure tangential derivatives are deduced [1] . Egns.
(9)-(11) seemingly allow the closure of the elliptic pressure equation yiel-
ding Neumann conditions on BQ;, Dirichlet conditions on BQ,, and Robin b.c.
on BQz. Moreover the strong solution of Eqn. (14) implies p e C¢“, while Egn.
(1) only requires p e ct.

The solution of Egn. (13) does not require such smoothness assumptions
and it bypasses the whole closure problem for the differential BVP formulat-
ion by simply imposing:

L. nvdS=0 t zeQ
A ==

in a discretized form.
For an internal cell (i,j), Eqn. (13) yields:



2
'np. " .np. _4p.n.p +p.np. +p.np. = 2Ax qf_l. (15)
imjm 1pJp 1J imjp 1pJm 1]

For a cell adjacent to a non permeable boundary, Egn. (13) gives:

"P2p™P 4p™ = ax gl (16)

ipjm 1] imjm ij

For a cell along BQs one has:

1+KiAx/At)%if P = ax q" (17)

np s
j 1mjm 1J

1ipJjm

Egn. (17) shows the effect on the structure of [] due to the implicit
treatment of the b.c. and the particular definition of the numerical diver-
gence operator (Egns. (8),(11) ). Such an equation is consistent with a Robin
type b.c. for the differential equation for p; i.e.

k PP =n- (R + f)

Such a boundary condition reduces the computational effort to obtain
the pressure field with respect to the standard BVNS problem. The advantage
of employing the above formulation for non permeable walls thus follows. In
this case the "differential" b.c. for p would be:

(kp), + P =n-(R+f)

with k approaching zero as t increases.

In such a case the algorithm can be interpreted as an iterative method
yielding the correct non permeable steady state solution. In other words the
concept of the "artificial permeability" (AP) can be viewed as an artificial
compressibility limited to the cells adjacent to the solid boundary and va-
nishing at steady state.

RESULTS AND DISCUSSIONS

The incompressible laminar NS equations with non standard b.c. have
been solved by using a finite difference algorithm that saves the implicit
character of the problem (due to the incompressibility and the particular
pressure/velocity correlation), guaranteeing the mass conservation for eve-
ry computational cell.

For the chosen staggering (with velocity components at the geometrical
nodes, and pressure unknowns at the center of the mass cells) both velocity
components can be assigned at the boundaries. It can be shown that such a
grid configuration corresponds to the overlapping of two grids with the clas-
sical staggering [3] , having mesh sizes v2ax, and grid lines rotated of 45°
with respect to x and y. Consequently the method yields two uncoupled systems



of equations for the pressure by separating the p unknowns in even and odd

ones. The coupling of the fluiddynamic field is obtained by an appropriate

discretization of the momentum flux R . Moreover proper care must be taken

for the assignement of the b.c., since a well posed problem must be imposed
on each of the two "overlapping" grids.

The model has been tested to describe the flow motion in the presence
of permeable walls for a variety of geometries and operating conditions. Figs.
1.a-€ show the effects of different values of the exit pressure for given
inlet mass flow rate, Reynolds number (Re=10), and filtrating constant. Ob-
serve that the membrane flux does vary linearly with the exit pressure.
Moreover for the selected Re (Figs. 1.a-c) by simply imposing s-v = 0 and
p = constant at the exit, the Poiseuille flow is recovered in the outlet re-
gion. Figs. 2-3 show the computed results in forced percolators. The effects
of gravity are illustrated in Figs. 3.b-c; the differences on the velocity
field are due to the particular boundary conditions (Eqn. (4)). The results
in a "shear filtrating pump" configuration are plotted in Fig . 4 . Fina-
11y Fig. 5 shows the application of the method to investigate the validity
of the AP concept in a driven cavity flow configuration. The AP method is
equivalent to a regularization one, yielding an accurate description of the
steady state when k approaches zero.

In conclusions the applicability of the proposed method to calculate
a variety of transient and steady flow configurations has been shown, even
in the presence of external forces. The concept of artificial permeability
has been introduced (with some analogies with the artificial compressibili-
ty); however the advantages of using it depend on the filtrating law k(t)
and on the number of grid points.
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