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Foreword

This volume is the Proceedings of the Sixth Annual IEEE Symposium on Logic in
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computer science. Previous LICS symposia were held in Cambridge, Massachusetts;
Ithaca, New York; Edinburgh, Scotland; Asilomar, California; and Philadelphia,
Pennsylvania—each time attracting several hundred enthusiastic participants. The
Seventh LICS is scheduled for June 22-25, 1992, on the campus of the University of
California, Santa Cruz. .

LICS'91 is cosponsored by the IEEE-TC on Mathematical Foundations of Computing,
CWI, Amsterdam, and the Vrije Universiteit, Amsterdam, in cooperation with the
Association for Computing Machinery—SIGACT, the Association for Symbolic Logic,
and the European Association for Theoretical Computer Science.

LICS'91 has been subsidized by
Institutional Sponsors

Institut National de Recherche
en Informatique et en Automatique (INRIA)
Dutch National Facility for Informatics (NFI)
Dutch Royal Academy of Sciences (KNAW)

The Free University of Amsterdam (VU)
The University of Amsterdam
The City of Amsterdam
European Research Consortium
for Informatics and Mathematics (ERCIM)
KLM Royal Dutch Airlines

Donations by these Sponsors make it possible for the LICS Organizers to subsidize
student attendance, student author awards, invited speakers, and attendance by
researchers without other travel grants.

On behalf of the Organizing Committee and all the LICS'91 participants, I sincerely
thank these sponsors for their donations. I also thank the Program Chair, Gilles Kahn,
the Conference Co-Chairs, Jan Willem Klop and Roel de Vrijer, and the Publicity Chair,
Daniel Leivant, for their many months of effort. We look forward to another fruitful
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Albert R. Meyer
LICS General Chair
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April 1991

vii



Preface

The LICS Symposium aims for wide coverage of theoretical and practical issues in
computer science that relate to logic in a broad sense, including algebraic, categorical and
topological approaches. :

Representative topics mentioned in this year's call for papers include: abstract data
types, automated deduction, concurrency, constructive mathematics, data base theory,
finite model theory, knowledge representation, lambda and combinatory calculi, logical
aspects of computational complexity, logics in artificial intelligence, logic programming,
modal and temporal logics, program logic and semantics, rewrite rules, software
specification, type systems, verification.

The 40 contributed papers in this volume were selected by the Program Committee from
a total of 167 submissions; several additional submissions arrived too late to be
considered.  Selection criteria included originality, quality, relevance to Computer
Science, and suitability for conference presentation. A brief synopsis of each extended
abstract was mailed to every member of the program committee, with five members
designated as primary readers. Some members of the committee chose to consult
additional reviewers whose names are listed on the following page. Constructive reviews
‘were sent to all submitting authors whenever available.

Although LICS submissions were read carefully, conference selection is not a formal
refereeing process. Many of the papers describe ongoing research and it is anticipated
that authors will publish more polished and complete versions in scientific journals.

On behalf of the Program Committee, I thank all authors who chose to submit their
papers to LICS'91. Many excellent submissions could not be accepted because of size
limitations on the symposium. I would also like to thank the members of the program
committee and the additional reviewers for their untiring efforts in reading and evaluating
the large number of excellent submissions received this year. I would like to thank Prof.
Christine Paulin, who helped me in deciding who should be the primary reviewers.
Further, I wish to thank Lydia Vergamini who managed the surprisingly large flow of
information generated in evaluating so many papers.

Gilles Kahn
1991 Program Chair
Program Committee
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A Foundational Delineation of
Computational Feasibility

Daniel Leivant*

Abstract

A Junction over {0,1}* is in P-Time iff it is com-
puled by a program which can be proved correct in
second-order logic with sei-ezistence (comprehension)
restricted to positive quantifier-free formulas. This
set-existence principle captiures formally the view of
infinite totalities as evolving, not completed, entities.

1 Introduction

1.1 Feasibility and P-Time

Feasible computing has been identified for long with
computability within deterministic polynomial time,
primarily on practical and circumstantial grounds: P-
Time functions are easily defined and computed, and
are closed under many natural operations; and most
known worst-case lower-bounds are either bounded by
polynomials of small degrees, which are clearly fea-
sible, or are at least exponential, and clearly non-
feasible. The central importance of P-Time has been
contested as of late, notably because feasible proba-
bilistic classes might subsume P-Time in their practi-
cal significance, and because bounds such as n'°glgn
. are more feasible in practice than say n10%0 At the
same time, the fundamental nature of P-Time has
been reaffirmed repeatedly by various characteriza-
tions and stability results. For example, relations
computable in P-Time over enumerated finite struc-
tures are the same as the ones computable by re-
cursion equations [Saz80,Gur83] or by pure uninter-
preted logic programs [Pap85], or by alternating multi-
head automata [CKS81,Gur87]; they are also the same
as the relations defined by positive first-order fix-
points [Var82,Imm86], or by first-order inflationary
fixpoints [GS86,Lei90a], or by alternating transitive-
closure [Imm87]. The P-Time functions over N have,
among others, characterizations in terms of a subre-
cursive schema [Cob65], provability in a weak system

*Author’s current address: SCS, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213. Address effective Fall 1991: Com-
puter Science Department, Indiana University, Bloomington, IN
47405.

CH3025-4/91/0000/0002$01.00 © 1991 |IEEE

_for arithmetic [Bus86], and typability in a bounded

version of linear logic [GSS89].

These characterizations testify to the significance of
P-Time, but they all seem to lack a principle directly
pertinent to feasibility, one that would justify the iden-
tification of P-Time with feasible computing. Our aim
here is to propose such a principle.

1.2 The ontology of numeric terms

Computational feasibility is closely related to the on-
tology of numeric terms. As soon as non-feasible func-
tions are named, they take a life of their own, and on-
tologically problematic natural numbers become eas-

3

ily nameable, such as 3 1T 5 =q¢ 33" In particu-
lar, once exponentiation is admitted, then very short
terms exist whose numeric values exceeds not only hu-
man imagination, but also possible realization in the
physical world: 3 1T 5 could not be spelled out as a
decimal numeral even by quark-size computers filling
up the observable universe and working concurrently
since the big bang at a speed that exceeds the limita-
tions of quantum mechanics.

The abyss between the value and the mnotation-size
of such terms has been addressed by a number of
mathematicians and philosophers, including Bernays
[Ber35], van Danzig [Dan56], Yessenin-Volpin [Yes70],
Isles [Isl91], and Nelson [Nel86]. Gandy [Gan89] con-
cludes that “very large numbers are abstract not con-
crete (not potentially concrete) objects: they are more
akin to infinite sets than to concretely presented num-
bers.”

1.3 Predicativity and potential infinities

Basic infinite sets, such as the set N of the natural
numbers or the first inaccessible cardinal, are concep-
tualized as being generated by a process. To be ad-
mitted as legitimate, we must assume that some “uni-
verse” exists within which that process can be applied .
“indefinitely”. Similarly, our belief that 3 1T 5 denotes
a natural numbers is based on the conviction that the
calculation of that term will be completed eventually.
Of course, we can support that conviction with a proof



by induction, but, as we shall see, for that proof to
make sense we must admit that infinite sets ezist as
complete totalities.

Less than a century ago, the legitimacy of infinite sets
as completed totalities was not as universally taken for
granted as it is today, under the influence of Cantorian
set theory. Hilbert had hoped to shelter Mathemat-
ics from the potential dangers of actual infinities by
reducing it to its finitistic fragment. An important
aspect of Brouwer’s intuitionistic foundations is the
insistence that infinite totalities are only unbounded
constructions: “The natural numbers, though treated,
constitute only a potential totality in constructive
mathematics” [Kre61).

Recall that a definition of a set X is impredicative
if it refers to a collection of which X is an element.
Uncontrolled impredicativity leads to contradictions,
as in Russell’s Paradox. However, impredicative defi-
nitions abound in Mathematical Analysis, where real
numbers (i.e. subsets of N or functions over N, de-
pending on the representation) are defined in terms of
quantification over all reals. We normally expect no
contradiction to arise, because we implicitly assume
that the power set of N, PN, is given as a completed
totality prior to the definition of any particular mem-
bers thereof.! In predicative systems of analysis? one
refrains from assuming the power set of N as given,
albeit N is assumed as a completed totality. This im-
plies that a subset of N cannot be defined in terms
of quantification over PN, and circular definitions are
thereby excluded.

An argument raised by Nelson [1986] is that the defini-
tions of N are also circular: the generative (inductive)
definition, as a set constructed by repeated application
of the successor function, presupposes an understand-
ing of N itself (specifically when Induction is proposed
as the formal justification of the process). The defi-
nition of N as the intersection of all sets containing
0 and closed under successor presupposes that such a
set exists, and moreover uses a blatantly impredicative
quantification over sets.3

. lImpredicative definitions of this form are captured by the
Subset (Separation) axiom schema of Zermelo’s Set Theory.

2Predicative Analysis goes back to Borel and the semi-
intuitionists of the turn of the century, and has been revived
by Kreisel, Feferman, Wang, Schiittee, and many others.

3Shoenfield and Wang (in conversation with Kreisel, re-
ported in [Kre61, fn. 1]) have made the interesting dual ob-
servation that if the generative justification of N were to, be
taken as “predicative”, then one should also accept as predica-
tive the set W of all well-founded countably-branching trees,
which is complet.e-l'l} and not “predicative” in the sense of be-
ing hyperarithmetical.

Nelson point is, then, that the culprit in generating
ontologically dubious terms is the impredicative justi-
fication of the set N, and therefore the impredicativity
of proof by Induction. Nelson observes that induction
presupposes that N is given as a completed totality,

~and so using induction to justify that the: values of

certain terms are in N is an impredicative argument.
He goes on to develop a system of Predicative Arith-
metic, in which exponentiation is not provably correct.
A problem with Nelson’s development is that no clear
cut rationale is given for admitting addition and muliti-
plication, but not exponentiation, as primitives. Isles
[1991] brings out the impredicative natute of the proof
that the exponentiation function is well defined, but
he too does not provide a foundational delination of
feasibility.

1.4 Strictly Predicative Comprehension

Levels of impredicativity can be precisely calibrated by
comprehension (set existence) principles, i.e. the ad-
mittance as legitimate of sets {z € N | ¢} for certain
formulas ¢. Much progress has been made in the last
decade in calibrating the strength of formalisms for
second-order arithmetic with weak forms-of compre-
hension (notably by H. Friedman, Mints, Sieg, Simp-
son, and Smith). However, all formalisms considered
are built on top of Primitive Recursive Arithmetic,
so these studies are of no help in delineating the im-
predicativity involved in the primitive recursive (PR)
functions, let alone in smaller classes.

A framework for calibrating the impredicativity of
sub-PR functions was proposed in [Lei83, Lei90], with
second-order logic used in_place of second-order arith-
metic. Contrary to weak systems for second-order
arithmetic, the set of natural numbers is here not as-
sumed as a completed totality. The method does not
depend on any choice of basic numeric functions (such
as addition and multiplication) or of axioms for them,
and is therefore suitable for calibrating the logical na-
ture of “small” functions. Moreover, it applies as eas-
ily to any term algebra as to N. '

Consider now the question of what instances of com-
prehension can be justified on strictly predicative
grounds. Since the existence of infinite sets as com-
pleted totality cannot be so justified, we must stip-
ulate that relational variables range over finite or
potentially-infinite sets, i.e. sets that are “coming into
being”. Over a given structure we use comprehen-
sion to delineate new sets that are finite or potentially
infinite, from the structure functions and relations,
and from relational variables which denote already-
defined finite or potentially infinite sets. Specifically,



if R is a relational variable, and t are terms (where
arity(t) = arity(R)), we admit {z | R(t)}. We must
also admit finite unions and intersections of admitted
sets. However, we can not admit the complement of an
admitted set .S, since this is tantamount to accepting
S as an actual infinity, for which non-members can be
identified. Also, the use of quantifiers is suspect, be-
cause they refer to exhaustive inspection of the struc-
ture universe. * We are thus led to accept, on strictly
predicative grounds, comprehension over exactly the
positive quantifier-free formulas (i.e. without negation
or implication).

The main result of this paper states that the com-
putable functions justified on the basis of positive
quantifier-free comprehension are precisely the func-
tions computable in deterministic polynomial time.
This shows'that the class P-Time arises naturally from
a foundational analysis of feasibility, and that terms
using exponentiation can be justified as meaningful
only under the admission of infinite sets as completed
totalities. Specific terms, such as 3 {] 5, have their
own complete computation as direct justification, but
since no such computation can ever be exhibited, such
terms can be feasibly justified only via the general jus-
tification of exponentiation, i.e. via implicit reference
to completed infinite sets.

2 Functional programs

2.1 Herbrand-Godel programs

Our canonical computation model is functional pro-
grams, in the Herbrand-Godel style (See [Kle52]
or [Lei90] App. 1 for expositions). The original
Herbrand-Godel definition is for N, the free term alge-
bra generated from a constant 0 and a unary function
s. We use such programs over arbitrary free algebras,
in particular the term algebra generated from a con-
stant ¢ and unary functions 0 and 1, i.e. simply the
set W = {0,1}* (e.g. the word 011 is identified with
the term 011e = 0(1(1(¢)))). We can assume, without
loss of generality, that functional programs are coher-

ent, i.e. that they define a partial function, and not a

multiple-valued function.?

For example, the following program (over W) com-
putes the function ®, which on input v, w.returns

4 We comment on this in the list of research directions below.

5Kleene [1952] showed this for numeric functions. A proof for
the general case can be obtained either by generalizing Kleene's
proof for a computation model with fixpoint, or by generalizing
the simulation used in Lemma 3.2 below for Turing machine
computbility. Details will be given elsewhere.

w" = w---w (n factors in concatenation) where

n = length(v). We use c to range over {0, 1}.

cEQw=w
wOe=¢€

(cv)®w=c(vdw)
wO(cv) = wd (wov)

2.2 Convergence

To formally state the convergence of a functional pro-
gram for some or for all input one needs to refer to
potentially non-terminating computations. An ap-
proach common in Proof Theory, and due to Kleene
[Kle52, Kle69], is to explicitly describe operational
convergence, in a formalism sufficiently rich to code
(Godelize) the operational machinery. In logics of pro-
grams one expresses convergence using modal opera-
tors (as in Dynamic Logic, see e.g. [Pra80]) or using
potentially non-denoting terms (see e.g. [Gol82]).

We continue here the alternative approach of [Lei83,
Lei90], where programs are considered not as defini-
tions of partial functions over the term-algebra A in
hand, but as definitions of total functions over any
structure whose vocabulary contains the generators
of A. The key connection between such structures
and convergence of programs over the intended term-
algebra is given by the following observation [Lei83,
Lei90]. Fix a term algebra A. For a functional pro-
gram P (over A) let [P] be the conjunction of the
universal closures of the equations in P.

Theorem 2.1 Let P be a functional program with
principal function identifier f. The following condis-
tions are equivalent: (1) P converges (over A) for in-
put t € A; (2) for every model S of [P), there is some
r € A such that S |= £(£) = r; (3) there is somer € A
such that for every model S of [P] S |= f(f) =r.

The entailment relation |= refers here to all structures
of the appropriate vocabulary.

2.3 Second-order statement of conver-
gence

We consider a second-order extension of first-order
logic with new variables ranging over relations, and
quantification over such variables. Let 4 be a free
term algebra. Writing A also for the predicate “is
€-A”, we have '

Alz) =ar YQ ClL[Q] — Q(z)



where Ci4[Q] is a formula stating that Q is closed
under the generators of A. For instance,

ClwlQ] =ar Q(e) A Vu (Q(u)—(Q(0u) A Q(1u)))
From Theorem 2.1 we then conclude:

Theorem 2.2 Let P be a functional program with
* principal function identifier f. P converges (over A)
for all input iff

[P] = A(Z) — A(£(2))

Here arity(Z) = arity(f), A(z1...2x) abbreviates
A(z1)A--+AA(z), and the relational quantifiers have
their standard interpretation.

2.4 Provable convergence

By Theorem 2.2 there is a natural, axiom-
independent, way of formulating in formalisms for
second-order logic the provable convergence of func-
tions.

Let L be a formalism for second (or higher) order logic.
We say that a function f over A is provable in L iff
it is computed by some functional program P (with
principal function identifier f) such that

[Pl kL A(E) — Af(D))

Given a collection C of formulas, let Ly(C) be a
formalism for second-order logic with comprehen-
sion for formulas in C (for example, the natu-
ral deduction formalism of [Pra65]). The inter-
pretation in [Pra65] of second-order arithmetic in
second-order logic implies that the provable func-
tions (over N) of La(all second-order formulas) are
precisely the provably-recursive functions of second-
order arithmetic.® In particular, from N(z) one gets
" induction with respect to z for all formulas.

To obtain from N(z) induction for a first-order arith-
metic formula ¢ we need comprehension for the inter-
pretation ¢’ of ¢, which in general is not first-order,
because quantifiers in ¢ are interpreted in ¢’ as quan-
tifiers relativized to N. In [Lei90b, Lei91] it is shown
that the provably recursive functions of first-order
arithmetic are precisely the provably recursive func-
tions of La(strict-II}), andthat the primitive-recursive
functions are precisely the provably recursive functions
of Ly(strict-II}without relational parameters). 7

6 A simple method for dealing with Peano’s third and fourth
axioms is given in [Lei90].

7A formula is strict-TT} if it is of the form ¥(3#y, with ¥

quantifier-free. In [Lei91] we gave an overview of the concept's
significance.

2.5 S-provable convergence '

We shall refer here to a notion of provable convergence
formally weaker than the one defined above. Let S be
a structure in the vocabulary V4 = {fo...fi} of A,
where arity(f;) = r; 2 0. We say that § is surjective if
its universe |S| is covered by the range of the structure
functions and constants, i.e. if

S | Surjy
where

Surj, =ar Vu \/ vy ... v, u=fi(vy...0).
* o 3=0..k .

For example

Surjy = Vu(u:e V Jv(u=0v) V Fv(u=1v))

The surjective structures include not only the free al-
gebra A itself, but also most natural examples of non-
standard models for the theory of A. For example,
the flat A domain is surjective because L = f(L,...)
for any non 0O-ary f € V4 (we assume that A is non-
trivial). _ : 25

Since every term algebra A is surjective, Theorem 2.2
holds trivially when validity is restricted to validity in

surjective structures; i.e. P converges over A for all
input iff

[P), Surjs = A(Z) — A(£(£))-

Given a formalism L as above, we say that a function
f over A is s-provable in L iff it is computed by
some functional program P (with principal function
identifier f) such that )

[P], Surj, Fi A(F) — A(£(E)).

Every function provable in L is trivially s-provable in
L. The next theorem states that the converse holds
when L has enough comprehension. Let a = afz] be
a formula with some single free variable z. If p is a
second-order formula, its relativization o a, %, is ob-
tained by restricting first-order quantification to ele-
ments satisfying «, and restricting second-order quan-
tification to subsets of the the extension of a. Ile.,
¢* is defined by recurrence on ¢ as follows, where,
for k-ary Q, @ C o abbreviates Yv;... v Q(¥) —
afvi] A+ Aafu).

¢® =4 (¢ quantifier free)
()*  =ar —(¥%)
(p*x¥)* =4t ¢**9¥* (* a binary connective)



